Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Thanh Huyền
Xem chi tiết
Hoàng Tử Hà
16 tháng 2 2021 lúc 19:01

Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm

undefined

Ngoc Chau
Xem chi tiết
Ngoc Chau
Xem chi tiết
dang thi khanh ly
Xem chi tiết
Ngoc Chau
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2020 lúc 12:35

a/ \(=\lim\limits\frac{1-\frac{1}{n}}{2+\frac{7}{n}}=\frac{1-0}{2+0}=\frac{1}{2}\)

b/ \(=lim\frac{4-\frac{1}{n}+\frac{1}{n^2}}{6+\frac{1}{n^2}}=\frac{4-0+0}{6+0}=\frac{4}{6}=\frac{2}{3}\)

c/ \(=lim\frac{3-\frac{1}{n}}{\frac{1}{n^2}-1}=\frac{3-0}{0-1}=\frac{3}{-1}=-3\)

d/ \(=lim\frac{\frac{8}{n}+\frac{1}{n^2}}{1-\frac{2}{n}+\frac{19}{n^2}}=\frac{0+0}{1-0+0}=\frac{0}{1}=0\)

e/ \(=lim\frac{\sqrt{9-\frac{4}{n^2}}+2}{2+\frac{7}{n}}=\frac{\sqrt{9}+2}{2+0}=\frac{5}{2}\)

Trần Hoàng Gia Thiên
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2020 lúc 12:37

\(lim\frac{\sqrt{9n^2+2n}+n-2}{\sqrt{4n^2+1}}=lim\frac{\sqrt{9+\frac{2}{n}}+1-\frac{2}{n}}{\sqrt{4+\frac{1}{n^2}}}=\frac{\sqrt{9}+1}{\sqrt{4}}=2\)

\(lim\frac{n}{\sqrt{4n^2+2}+\sqrt{n^2}}=lim\frac{1}{\sqrt{4+\frac{2}{n^2}}+\sqrt{1}}=\frac{1}{\sqrt{4}+\sqrt{1}}=\frac{1}{3}\)

\(lim\frac{\sqrt{4n+2}-\sqrt{2n-5}}{\sqrt{n+3}}=lim\frac{\sqrt{4+\frac{2}{n}}-\sqrt{2-\frac{5}{n}}}{\sqrt{1+\frac{3}{n}}}=\frac{2-\sqrt{2}}{1}=2-\sqrt{2}\)

l\\(lim\frac{\sqrt{4n^2+n+1}-n}{n^2+2}=lim\frac{\sqrt{4+\frac{1}{n}+\frac{1}{n^2}}-1}{n+\frac{2}{n}}=\frac{1}{\infty}=0\)

\(lim\frac{\sqrt{9n^2+n+1}-2n}{3n^2+2}=\frac{\sqrt{9+\frac{1}{n}+\frac{1}{n^2}}-2}{3n+\frac{2}{n}}=\frac{1}{\infty}=0\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 2 2020 lúc 12:03

Muốn giúp bạn lắm mà ko sao dịch được đề :D

Bạn sử dụng công cụ gõ công thức, nó ở ngoài cùng bên trái khung soạn thảo, chỗ khoanh đỏ ấy, cực dễ sử dụng

Hỏi đáp Toán

Khách vãng lai đã xóa
CHANNANGAMI
Xem chi tiết
CHANNANGAMI
Xem chi tiết
...:v
8 tháng 2 2021 lúc 17:03

Lạ nhỉ, tui chả biết dạng này dạng gì nữa :D

\(\lim\limits\dfrac{\left(n+1\right)\left(\sqrt{3n^2+2}+\sqrt{3n^2-1}\right)}{n^2\left(3n^2+2-3n^2+1\right)}=\lim\limits\dfrac{\left(\dfrac{n}{n}+\dfrac{1}{n}\right)\left(\sqrt{\dfrac{3n^2}{n^2}+\dfrac{2}{n^2}}+\sqrt{\dfrac{3n^2}{n^2}-\dfrac{1}{n^2}}\right)}{3n^2}=\dfrac{2\sqrt{3}}{3}=\dfrac{2}{\sqrt{3}}\)

...:v
8 tháng 2 2021 lúc 16:09

Cậu ơi :( Cậu chụp cái đề lên được ko, khó hịu thực sự :( 

...:v
8 tháng 2 2021 lúc 16:41

Được rồi, biết gõ công thức rồi đó :)

\(D=\lim\limits\dfrac{n+1}{n^2\left(\sqrt{3n^2+2}-\sqrt{3n^2-1}\right)}\)

\(D=\lim\limits\dfrac{\dfrac{n}{n^3}+\dfrac{1}{n^3}}{\dfrac{n^2.\left(3n^2+2\right)^{\dfrac{1}{2}}}{n^3}-\dfrac{n^2\left(3n^2-1\right)^{\dfrac{1}{2}}}{n^3}}=0\)

Dung ko nhi :D?

CHANNANGAMI
Xem chi tiết
...:v
8 tháng 2 2021 lúc 15:54

\(F=\lim\limits\dfrac{\sqrt[4]{n^4-2n+1}+2n}{\sqrt[3]{3n^3+n}-n}=\lim\limits\dfrac{\sqrt[4]{\dfrac{n^4}{n^4}-\dfrac{2n}{n^4}+\dfrac{1}{n^4}}+\dfrac{2n}{n}}{\sqrt[3]{\dfrac{3n^3}{n^3}+\dfrac{n}{n^3}}-\dfrac{n}{n}}=\dfrac{1+2}{3-1}=\dfrac{3}{2}\)