Lạ nhỉ, tui chả biết dạng này dạng gì nữa :D
\(\lim\limits\dfrac{\left(n+1\right)\left(\sqrt{3n^2+2}+\sqrt{3n^2-1}\right)}{n^2\left(3n^2+2-3n^2+1\right)}=\lim\limits\dfrac{\left(\dfrac{n}{n}+\dfrac{1}{n}\right)\left(\sqrt{\dfrac{3n^2}{n^2}+\dfrac{2}{n^2}}+\sqrt{\dfrac{3n^2}{n^2}-\dfrac{1}{n^2}}\right)}{3n^2}=\dfrac{2\sqrt{3}}{3}=\dfrac{2}{\sqrt{3}}\)
Cậu ơi :( Cậu chụp cái đề lên được ko, khó hịu thực sự :(
Được rồi, biết gõ công thức rồi đó :)
\(D=\lim\limits\dfrac{n+1}{n^2\left(\sqrt{3n^2+2}-\sqrt{3n^2-1}\right)}\)
\(D=\lim\limits\dfrac{\dfrac{n}{n^3}+\dfrac{1}{n^3}}{\dfrac{n^2.\left(3n^2+2\right)^{\dfrac{1}{2}}}{n^3}-\dfrac{n^2\left(3n^2-1\right)^{\dfrac{1}{2}}}{n^3}}=0\)
Dung ko nhi :D?