Cho a,b là các số thõa mãn a>b>0 và a^3 - a^2b +ab^2- 6b^3=0 . Tính P = (a^4 - 4b^4)/(b^4 - 4a^4)
Cho a và b là các số thỏa mãn: a>b>0 và a^3-a^2b+ab^2-6b^3=0
Tính giá trị biểu thức A=(a^4-4b^4)/(b^4-4a^4)
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b
Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
Cho a, b thỏa mãn: \(a>b>0\) và \(a^3-a^2b+ab^2-6b^3=0\).
Tính giá trị biểu thức: \(P=\frac{a^4-4b^4}{b^4-4a^4}\)
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
cho a,b là các số thỏa a>b>0 và \(a^3-a^2b+ab^2-6b^3\) Tính giá trị của \(A=\frac{a^4-4b^4}{b^4-4a^2}\)
cho a và b thỏa mãn a>b>0 và a3 - ba2 +ab2-6b3 = 0 . tính giá trị biểu thức \(B=\frac{a^4-4b^4}{b^4-4a^4}\)
Cho a>b>0 và \(a^3-a^2b+ab^2-6b^3=0.\)Tính \(\dfrac{a^4-4b^4}{b^4-4a^4}\)
ta có: \(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-2a^2b\right)+\left(a^2b-2ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\)
vì \(a>b>0\Rightarrow\left(a^2+ab+3b^2\right)>0\)
\(\Rightarrow a-2b=0\)
\(\Leftrightarrow a=2b\)
Thế vào \(\dfrac{a^4-4b^4}{b^4-4a^4}=\dfrac{-4}{21}\)
cho a,b thuộc R thỏa \(\hept{\begin{cases}a>b>0\\a^3-a^2b+ab^2-6b^3=0\end{cases}}\)
tính giá trị biểu thức \(D=\frac{a^4-4b^4}{b^4-4a^4}\)
Ta có : a3 - a2b + ab2 - 6b3 = 0
<=> a3 + a2b + 3ab2 - 2a2b - 2ab2 - 6b3 = 0
<=> a( a2 + ab + 3b2 ) - 2b( a2 + ab +3b2 ) = 0
<=> ( a2 + ab + 3b2 ).( a - 2b ) = 0
=> a2 + ab + 3b2 = 0 (1) hoặc a - 2b = 0 (2)
Giải (1) : a2 + ab + 3b2 = 0
Vì a > b > 0 => a2 + ab + 3b2 khác 0
=> a2 + ab + 3b2 = 0 ( vô nghiệm )
Giải (2) : a - 2b = 0 <=> a = 2b thay vào D :
=> D = ( 16b4 - 4b4 )/( b4 - 64b4 )
=> D = 12b4/-63b4
=> D = -4/21
\(\frac{a^3}{b^3}-\frac{a^2}{b^2}+\frac{a}{b}-6=0.\) " (chia 2 vế cho b^3)
\(t^3-t^2+t-6=0\) " đăt a/b=t
từ đây bạn có thể dễ dàng tìm được t
mình chỉ gợi ý đến đây thôi
Cho a, b thỏa mãn: \(a>b>0\) và \(a^3-a^2b+ab^2-6b^3=0\)
Tính: \(P=\frac{a^4-4b^2}{b^4-4a^4}\).
Help me ạ!!!
cho 2 số a,b a>b>0 và a^3 -a^2b + ab^2 -6b^3 =0 tính p= (a^4 -ab^4 )/( b^4 -a^2)