Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ABCXYZ
Xem chi tiết
Minh Đăng
Xem chi tiết
Nguyễn Nhung
23 tháng 4 2019 lúc 22:06

bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????

VŨ TRỊNH
2 tháng 5 2019 lúc 16:47

3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)

Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE

4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)2016-04-23_193155

Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE

⇒DKE = DEK => ΔDEK cân tại D => DE = DK

Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC

Nguyễn Bảo Nam
Xem chi tiết
Mai Tuyết
Xem chi tiết
Nguyễn Thị Thúy Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 17:34

a) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: BCEF là tứ giác nội tiếp(cmt)

nên \(\widehat{EBC}=\widehat{EFC}\)(hai góc cùng nhìn cạnh EC)

hay \(\widehat{MBC}=\widehat{HFE}\)(1)

Xét (O) có 

\(\widehat{MBC}\) là góc nội tiếp chắn cung CM

\(\widehat{MNC}\) là góc nội tiếp chắn cung CM

Do đó: \(\widehat{MBC}=\widehat{MNC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{MBC}=\widehat{HNM}\)(2)

Từ (1) và (2) suy ra \(\widehat{HFE}=\widehat{HNM}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên FE//MN(Dấu hiệu nhận biết hai đường thẳng song song)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 10 2017 lúc 16:05

a) Vì C, D thuộc nửa đường tròn đường kính AB nên

A C B = A D B = 90 o ⇒ F C H = F D H = 90 o ⇒ F C H + F D H = 180 o  

Suy ra tứ giác CHDF nội tiếp

b) Vì AH BF, BH AF nên H là trực tâm ∆ AFB FH AB

⇒ C F H = C B A ( = 90 o − C A B ) ⇒ Δ C F H ~ Δ C B A ( g . g ) ⇒ C F C B = C H C A ⇒ C F . C A = C H . C B

Trang Đoàn
Xem chi tiết
Quỳnh Anh Trần
Xem chi tiết
Giản Nguyên
5 tháng 6 2018 lúc 13:27

3, ta có: góc MFA = \(\frac{1}{2}\).(sđ cung AM + sđ cung BQ)   (góc có đỉnh nằm trong đường tròn )

và góc MPQ = \(\frac{1}{2}\).sđ cung MQ = \(\frac{1}{2}\).. (sđ cung MB + sđ cung BQ ) (góc nội tiếp)

mà sđ cung AM = sđ cung MB (do M là điểm chính giữa cung AB )

=> góc MFA = góc MPQ

=> góc ngoài MFA tại hai đỉnh có hai góc đối nhau bằng nhau thì tứ giác EFQP là tứ giác nội tiếp hay E,F,P,Q cùng thuộc 1 đường tròn (đpcm)

Phạm Hồng Nguyên
Xem chi tiết
Trần Minh Hoàng
26 tháng 5 2021 lúc 22:21

a) Xét tam giác DAC và tam giác DBE có:

\(\left\{{}\begin{matrix}\widehat{ADC}=\widehat{BDE}\left(\text{đối đỉnh}\right)\\\widehat{DAC}=\widehat{DBE}\left(=\dfrac{1}{2}sđ\stackrel\frown{CE}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta DAC\sim\Delta DBE\left(g.g\right)\)

\(\Rightarrow\dfrac{DA}{DC}=\dfrac{DB}{DE}\Rightarrow DA.DE=DB.DC\).

b) Ta có \(\widehat{FCB}=\widehat{FEA}=90^o\) nên tứ giác FCDE nội tiếp đường tròn đường kính FD.

c) Dễ thấy I là trung điểm của FD.

Từ đó tam giác ICD cân tại I.

Dễ thấy D là trực tâm của tam giác FAB nên \(FD\perp AB\). Ta có: \(\widehat{ICD}=\widehat{IDC}=90^o-\widehat{AFD}=\widehat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\) nên IC là tiếp tuyến của (O).

Trần Minh Hoàng
26 tháng 5 2021 lúc 22:21

undefined