Trong mặt phẳng tọa độ chứng minh 3 điểm M(1;1); N((2;-2); P(-1;7) thẳng hàng
trong mặt phẳng tọa độ Oxy có các điểm M(-2;-1), N(1,5 ; 2,5), P(-0,5 ; 0;5). chứng minh 3 điểm M, N, P thẳng hàng
Trong mặt phẳng tọa độ Oxy, cho các điểm M(1; 3), N(4; 2)
a) Tính độ dài các đoạn thẳng OM, ON, MN.
b) Chứng minh rằng tam giác OMN vuông cân.
a) Ta có: M(1; 3) và N (4; 2)
\( \Rightarrow \overrightarrow {OM} (1;3),\;\,\overrightarrow {ON} (4;2),\;\overrightarrow {MN} = (4 - 1;2 - 3) = (3; - 1)\)
\( \Rightarrow OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10} ,\)\(ON = \left| {\overrightarrow {ON} } \right| = \sqrt {{4^2} + {2^2}} = 2\sqrt 5 ,\)\(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} = \sqrt {10} \)
b) Dễ thấy: \(OM = \sqrt {10} = MN\)\( \Rightarrow \Delta OMN\) cân tại M.
Lại có: \(O{M^2} + M{N^2} = 10 + 10 = 20 = O{N^2}\)
\( \Rightarrow \) Theo định lí Pythagore đảo, ta có \(\Delta OMN\)vuông tại M.
Vậy \(\Delta OMN\) vuông cân tại M.
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=√5AE5AE ( biết O là gốc tọa độ và m lớn hơn 0 ).
a: \(AB=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-1-2\right)^2}=5\)
\(BC=\sqrt{\left(5-2\right)^2+\left(3+1\right)^2}=5\)
Do đó: AB=BC
hay ΔABC cân tại B
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=\(\sqrt{5}AE\) ( biết O là gốc tọa độ và m lớn hơn 0 ).
a: \(AB=\sqrt{\left(2+2\right)^2+\left(-1-2\right)^2}=5\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Do đó: ΔABC cân tại B
Trong mặt phẳng tọa độ Oxy, cho các điểm A(1; 3), B(2; 4), C(-3; 2).
a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác.
b) Tìm tọa độ trung điểm M của đoạn thẳng AB.
c) Tìm tọa độ trọng tâm G của tam giác ABC.
d) Tìm điểm D(x; y) để O(0; 0) là trọng tâm của tam giác ABD.
a)
Ta có: \(\overrightarrow {AB} = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC} = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)
Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).
Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.
Vậy A, B, C là ba đỉnh của một tam giác.
b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)
c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)
d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)
\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)
\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = - 7\end{array} \right.\end{array}\)
Vậy tọa độ điểm D là (-3; -7).
a.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng
\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác
b.
Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)
Gọi G là trọng tâm tam giác, theo công thức trọng tâm:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)
c.
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)
ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)
\(\Rightarrow D\left(5;-5\right)\)
Câu 5: Trong mặt phẳng Oxy cho 3 điểm A(1;5) . B(3;-1). C(- 1/- 1) . a) Chứng minh ba điểm A, B,C lập thành một tam giác. b) Xác định tọa dọ trọng tâm G của tam giác ABC. c) Xác định tọa độ vécttơ vec AM biết M là trung điểm của BC. d) Tính các tịch vô hưởng vec AM , vec BC , vec AC , vec BC
Trong mặt phẳng tọa độ cho 3 điểm A(2;3), B(-1;-3), C(0;-1)
a) Tìm hệ số góc của đường thẳng AB
b) Chứng minh rằng ba điểm A, B, C thẳng hàng
a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)
Do đường thẳng AB qua A và B nên ta có:
\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)
b. Thay tọa độ C vào pt AB:
\(-1=2.0-1\) (thỏa mãn)
\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng
Trong mặt phẳng tọa độ oxy cho (P):y = x^2 và (d): y = 2mx + 3 - 2m Chứng minh d luôn cắt P tại hai điểm mặt phẳng A và B. Tìm m để x1, x2 là độ dài hai cạnh của hình chữ nhật có đường chéo bằng √14
PTHĐGĐ là;
x^2-2mx-3+2m=0
Δ=(-2m)^2-4(2m-3)
=4m^2-8m+12
=4m^2-8m+4+8
=(2m-2)^2+8>0
=>(P) luôn cắt (d) tại hai điểm phân biệt
x1^2+x2^2=14
=>(x1+x2)^2-2x1x2=14
=>(2m)^2-2(2m-3)=14
=>4m^2-4m+6-14=0
=>4m^2-4m-8=0
=>m^2-m-2=0
=>(m-2)(m+1)=0
=>m=2 hoặc m=-1