Tính GTBT:
\(S=C^0_{15}+C^1_{15}+C^2_{15}+...+C^{15}_{15}\)
cho khai triển:
(1+x+x2+x3+...+x14)15= a0 + a1 x+ a2 x2 +...+a15 x15
CMR: C\(^0_{15}\) a15 - C\(^1_{15}\) a14 + C\(^2_{15}\) a13 -...- C\(^{15}_{15}\) a0 = -15
Mong nhận được sự giúp đỡ nhanh nhất mình cần ngay tối nay.
Cảm ơn nhìu :>
ccca
Tính: \(S=C^0_{20}+3.C^3_{20}+6.C^6_{20}+...+3kC_{20}^{3k}+...+15.C^{15}_{20}+18.C^{18}_{20}\)
Tính tổng: \(S=n\left(C^0_{n-1}+C^1_{n-1}+C^2_{n-1}+...+C^{n-1}_{n-1}\right)\)
\(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}=2^{n-1}\)
\(\Rightarrow S=n.2^{n-1}\)
Rút gọn: \(T=C^0_{50}-C^1_{50}+C^2_{50}-C^3_{50}+...+C^{18}_{50}-C^{19}_{50}\)
Chứng minh rằng:
\(C^0_{2n}+C^1_{2n}+C^2_{2n}+...+C^{2n}_{2n}=4^n\)
Xét khai triển: \(\left(x+1\right)^{2n}=C_{2n}^0+C_{2n}^1x+C_{2n}^2x^2+...+C_{2n}^{2n}x^{2n}\)
Thay \(x=1\) ta được:
\(2^{2n}=C_{2n}^0+C_{2n}^1+...+C_{2n}^{2n}\)
\(\Leftrightarrow4^n=C_{2n}^0+C_{2n}^1+...+C_{2n}^{2n}\)
Tính tổng \(C^0_{2000}+2C^1_{2000}+3C^2_{2000}+.......+2001C^{2000}_{2000}\)
Xét khai triển:
\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)
\(\Leftrightarrow x\left(x+1\right)^n=C_n^0.x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)
Thay \(n=2000\) ta được:
\(x\left(x+1\right)^{2000}=C_{2000}^0x+C_{2000}^1x^2+C_{2000}^2x^3+...+C_{2000}^{2000}x^{2001}\)
Đạo hàm 2 vế:
\(\left(x+1\right)^{2000}+2000x\left(x+1\right)^{1999}=C_{2000}^0+2C_{2000}^1x+...+2001C_{2000}^{2000}x^{2000}\)
Thay \(x=1\) ta được:
\(2^{2000}+2000.2^{1999}=C_{2000}^0+2C_{2000}^1+...+2001.C_{2000}^{2000}\)
\(\Rightarrow S=2^{1999}\left(2+2000\right)=2002.2^{1999}\)
Cho các số dương a ,b ,c thoả mãn : a+ab+b= 3,b+bc+c= 8,c+ac+c=15. Tính GTBT M=a+ b+ c
\(\hept{\begin{cases}a+ab+b=3\\b+bc+c=8\\c+ca+a=15\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}a+ab+b+1=4\\b+bc+c+1=9\\c+ca+a+1=16\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a+1\right)\left(b+1\right)=4\\\left(b+1\right)\left(c+1\right)=9\\\left(c+1\right)\left(a+1\right)=16\end{cases}}\) \(\left(1\right)\)
Nhân vế với vế \(\Rightarrow\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2=\left(24^2\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=24\)\(\left(2\right)\)
Chia vế với vế của \(\left(2\right)\)cho lần lượt các pt của \(\left(1\right)\), ta được :
\(\hept{\begin{cases}a+1=\frac{8}{3}\\b+1=\frac{3}{2}\\c+1=6\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{5}{3}\\b=\frac{1}{2}\\c=5\end{cases}}\)
\(\Rightarrow a+b+c=\frac{43}{6}\)
Cho khai triển: \(\left(1+x+x^2+...+x^{2015}\right)^{2016}=a_0+a_1x+a_2x^2+...+a_{4062240}x^{4062240}\). Tính giá trị biểu thức: \(T=C^0_{2016}a_{2016}-C^1_{2016}a^{2015}+C^2_{2016}a_{2014}-...+C^{2016}_{2016a_{ }0}\)
Mình nhầm \(C^1_{2016}a_{2015}\)thành \(C^1_{2016}a^{2015}\)
Tính tổng \(S=C^1_{100}-C^2_{100}+C^3_{100}-C^4_{100}+...+C^{99}_{100}-C^{100}_{100}\)
\(S=C_{100}^1-C_{100}^2+...-C_{100}^{100}\)
Ta có:
\(\Rightarrow S_1=C_{100}^0-C_{100}^1+C_{100}^2+...+C_{100}^{100}=0\)
\(\Rightarrow C_{100}^0=C_{100}^1-C_{100}^2+...-C_{100}^{100}=1\)(chuyển vế)
Vậy \(S=1\)