cho tam giác đều ABC có trọng tâm G. Tìm góc giữa GB, GC
Cho tam △ABC đều có G là trọng tâm. Và M là trung điểm BC. Tìm các vecto: GB+GC, AG+CB, AB+MC, AB+GB+GC
cho tam giác đều ABC có trọng tâm G. trung tuyến am=3cm. tính độ dài gb,gc
GIÚP MK VỚI
Xét tam giác đều ABC có
G là trọng tâm của tam giác(gt)
=> 3 đường trung tuyến bằng nhau
=> \(GB=GC=AG=\dfrac{2}{3}AM=\dfrac{2}{3}.3=2\left(cm\right)\)
Vì ΔBAC đều nên \(GB=GC=\dfrac{2}{3}AM\)
hay GB=GC=2cm
cho G là trọng tâm tam giác đều ABC c/minh GA=GB=GC
Cho G là trọng tâm của tam giác đều ABC. Chứng minh rằng:
GA = GB = GC


Gọi trung điểm BC, CA, AB lần lượt là M, N, P.
Khi đó AM, BN, CP đồng quy tại trọng tâm G.
Ta có: ∆ABC đều suy ra:
+ ∆ABC cân tại A ⇒ BN = CP (theo chứng minh bài 26).
+ ∆ABC cân tại B ⇒ AM = CP (theo chứng minh bài 26).
⇒ AM = BN = CP (1)
Vì G là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến:

Từ (1) , (2) ⇒ GA = GB = GC.
Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a, và góc giữa 2 vec tơ\(\overrightarrow{GB}\) và \(\overrightarrow{GC}\) là nhỏ nhất
cho g là trọng tâm của tam giác abc abc là tam giác đều
cm ga =gb=gc
GA=GB=GC, G là trọng tâm tam giác kkhi và chỉ khi đso là tam giác đều.
Đề sai
Cho tam giác đều ABC cạnh a, đường cao AH, trọng tâm G. Tính:
a, |AC|, |AB + AH|, |AB - AH|
b, |GB|, |GA + GB|, |GA + GB + GC|
tam giác abc đều các cạnh là 2a có trọng tâm g khi đó vecto GA+GB-GC BẰNG
\(\overrightarrow{GA}+\overrightarrow{GB}-\overrightarrow{GC}\)
\(=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{CG}\)
\(=\overrightarrow{GA}+\overrightarrow{CB}\)
Qua C, lấy K sao cho \(\overrightarrow{CK}=\overrightarrow{GA}\)
=>CK//GA và CK=GA
Xét ΔABC đều có G là trọng tâm
nên AG⊥BC
=>CK⊥CB
Xét ΔABC đều có G là trọng tâm
nên G là tâm đường tròn ngoại tiếp ΔABC
=>GA=GB=GC
Xét (G) có \(\hat{BAC}\) là góc nội tiếp chắn cung BC
nên \(\hat{BGC}=2\cdot\hat{BAC}=120^0\)
Xét tứ giác AGCK có
AG//CK
AG=CK
Do đó: AGCK là hình bình hành
Hình bình hành AGCK có AG=GC
nên AGCK là hình thoi
=>CA là phân giác của góc GCK
=>\(\hat{GCK}=2\cdot\hat{GCA}=60^0\)
Xét ΔGCK có GC=KC và \(\hat{GCK}=60^0\)
nên ΔGCK đều
=>\(\hat{KGC}=60^0\)
\(\hat{BGC}+\hat{KGC}=120^0+60^0=180^0\)
=>B,G,K thẳng hàng
Trên tia đối của tia GC, lấy E sao cho GC=GE
=>G là trung điểm của EC
Ta có: EC=2GC
BK=2GB
mà GC=GB
nên EC=BK
Xét tứ giác BCKE có
G là trung điểm chung của BK và CE
=>BCKE là hình bình hành
Hình bình hành BCKE có \(\hat{BCK}=90^0\)
nên BCKE là hình chữ nhật
=>\(\overrightarrow{CB}+\overrightarrow{CK}=\overrightarrow{CE}=2\cdot\overrightarrow{CG}\)
\(\overrightarrow{GA}+\overrightarrow{CB}=\overrightarrow{CK}+\overrightarrow{CB}=2\cdot\overrightarrow{CG}\)
=>\(\overrightarrow{GA}+\overrightarrow{GB}-\overrightarrow{GC}=2\cdot\overrightarrow{CG}\)
cho g là trọng tâm của tam giác đều abc chứng minh rằng gb=gc =ga