Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DTD2006ok
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 20:52

\(xy+yz+zx\le\dfrac{1}{3}\left(x+y+z\right)^2=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)

Xuan Xuannajimex
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 4 2021 lúc 20:37

\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)

\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)

\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)

\(P\le2\left(x+y+z\right)=2\)

\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)

Uyên Hoàng
Xem chi tiết
Yim Yim
5 tháng 6 2018 lúc 16:28

\(x+\sqrt{x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{x^2+yz+x\left(z+y\right)}\)

\(\ge x+\sqrt{2\sqrt{x^2yz}+x\left(y+z\right)}=x+\sqrt{x\cdot2\sqrt{yz}+x\left(y+z\right)}=x+\sqrt{x\left(y+z+2\sqrt{yz}\right)}\)

\(=x+\sqrt{x\left(\sqrt{y}+\sqrt{z}\right)^2}=x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)

\(\Rightarrow\frac{x}{x+\sqrt{x+yz}}\le\frac{x}{x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

tương tự :

\(\frac{y}{y+\sqrt{y+xz}}\le\frac{\sqrt{y}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}\)

\(\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}+\sqrt{y}}\) 

cộng vế theo vế ta được 

\(\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+zx}}+\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

dấu "=" xảy tra khi x=y=z=1/3

Nguyễn Thị Bảo Anh
28 tháng 3 2020 lúc 21:24

cái này thì chịu

Khách vãng lai đã xóa
Thiên bình đáng yêu
25 tháng 5 2020 lúc 17:48

khó muốn chết luôn làm sao làm đc

Khách vãng lai đã xóa
nguyễn thu trà
Xem chi tiết
D-low_Beatbox
Xem chi tiết
Ngudheh
Xem chi tiết
thường y vũ
Xem chi tiết
Vananh11062001
Xem chi tiết
to van nhat
Xem chi tiết
Tuấn
9 tháng 1 2018 lúc 23:00

cô si cho gt