4x^2-4y^2+4x+1
4x^2-4x+1+4y (1-2x)+4y^2
4y2+(4-8x)y+4x^2-4x+1
đúng sai thì mình ko bt nha
HT
Tìm x,y,z biết:
\(x=\frac{4x^2}{1+4z^2},y=\frac{4x^2}{1+4x^2},z=\frac{4y^2}{1+4y^2}\)
Giúp mình với
Viết các biểu thức sau dưới dạng tổng của 2 bình phương
1, x2 - 2x + 2 + 4y2 + 4y
2) 4x2 - 4x + y2 + 2y + 2
3) 4x2 + 4x + 4y2 + 4y + 2
4) 4x2 + y2 + 12x + 4y + 13
1. \(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
2. \(4x^2-4x+y^2+2y+2\)
\(=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
3. \(4x^2+4x+4y^2+4y+2\)
\(=\left(4x^2+4x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(2x+1\right)^2+\left(2y+1\right)^2\)
4. \(4x^2+y^2+12x+4y+13\)
\(=\left(4x^2+12x+9\right)+\left(y^2+4y+4\right)\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
\(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
\(4x^2-4x+y^2+2y+2\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
a)-6x^3y^2:2xy^2. b)-1/4x^4y^3:1/2x^3y^2. c) 8x^4y^5:4x^3y^4
a: \(=\left(-\dfrac{6}{2}\right)\cdot\dfrac{x^3}{x}\cdot\dfrac{y^2}{y^2}=-3x^2\)
b: \(=\left(-\dfrac{1}{4}:\dfrac{1}{2}\right)\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=-\dfrac{1}{2}xy\)
c: \(=\dfrac{8}{4}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^5}{y^4}=2xy\)
\(a,-6x^3y^2:2xy^2=-3x^2\)
\(b,-\dfrac{1}{4}x^4y^3:\dfrac{1}{2}x^3y^2=-\dfrac{1}{2}xy\)
\(c,8x^4y^5:4x^3y^4=2xy\)
#Urushi
(8xy+3)2 - (6x+4y)2
= (8xy + 3 - 6x -4y)(8xy+3+6x+4y)
=64x2y2 +9 - 36x2 - 16y2
=( 8xy)2 + 32 - (6x)2 - (4y)2
= 16y2 (4x2 - 1) + 9(1-4x2)
= 16y2 (4x2 - 1) - 9(4x2 - 1)
= (4x2 - 1)(16y2 -9) = (4x2-1)(4y-3)(4y+3)
BÀI TOÁN TRÊN ĐÚNG HAY SAI ? NẾU SAI, SAI Ở ĐÂU
sai từ dấu = thứ 2 , bạn nhân sai
sửa lại (mk làm theo cách nhóm ko phải nhân ra )
(8xy+3)2 - (6x+4y)2
= (8xy + 3 - 6x -4y)(8xy+3+6x+4y)
=[4y(2x-1)-3(2x-1)][4y(2x+1)+3(2x+1)]
=(2x-1)(4y-3)(2x+1)(4y+3)
Giải hệ phương trình: \(\hept{\begin{cases}x^2-4y^2-4x+4y+3=0\\x^2+2y^2-2xy+4x-4y-1=0\end{cases}.}\)
Phương trình trên <=> \(\left(x^2-4x+4\right)-\left(4y^2-4y+1\right)=0\Leftrightarrow\left(x-2\right)^2-\left(2y-1\right)^2=0\)
\(\Leftrightarrow\left(x-2-2y+1\right)\left(x-2+2y-1\right)=0\)
Em làm tiếp nhé!
Tìm x,y,z biết :
\(x=\frac{4z^2}{1+4z^2},y=\frac{4x^2}{1+4x^2},z=\frac{4y^2}{1+4y^2}\)
\(x=\frac{4}{1+4}=\frac{4}{5}=0,8\) \(z=\frac{4}{1+4}=\frac{4}{5}=0,8\)
\(y=\frac{4}{1+4}=\frac{4}{5}=0,8\)
PhungHuyHoang
Làm sai mà rút ra được kiểu đấy
phân tích đa thức thành nhân tử
a)8x^3+27
b) 4x^2-4x+1-y^2
c) x^4-2x^3+x^2-2x
d) x^2-4y^2+2x+4y
a) \(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
b) \(4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)
c) \(x^4-2x^3+x^2-2x=x^3\left(x-2\right)+x\left(x-2\right)=x\left(x-2\right)\left(x^2-1\right)=x\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(x^2-4y^2+2x+4y=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(x-2y+2\right)\)
1)4x^5y^2-8x^4y^2+4x^3y^2 2)5x^4y^2-10x^3y^2+5x^2y^2 3)12x^2-12xy+3y^2 4)8x^3-8x^2y+2xy^2 5)20x^4y^2-20x^3y^3+5x^2y^4
1) \(4x^5y^2-8x^4y^2+4x^3y^2\)
\(=4x^3y^2\left(x^2-2x+1\right)\)
\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=4x^3y^2\left(x-1\right)^2\)
2) \(5x^4y^2-10x^3y^2+5x^2y^2\)
\(=5x^2y^2\left(x^2-2x+1\right)\)
\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=5x^2y^2\left(x-1\right)^2\)
3) \(12x^2-12xy+3y^2\)
\(=3\left(4x^2-4xy+y^2\right)\)
\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=3\left(2x-y\right)^2\)
4) \(8x^3-8x^2y+2xy^2\)
\(=2x\left(4x^2-4xy+y^2\right)\)
\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=2x\left(2x-y\right)^2\)
5) \(20x^4y^2-20x^3y^3+5x^2y^4\)
\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)
\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=5x^2y^2\left(2x-y\right)^2\)
1: 4x^5y^2-8x^4y^2+4x^3y^2
=4x^3y^2(x^2-2x+1)
=4x^3y^2(x-1)^2
2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)
3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)
4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)
5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)