Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran hoai ngoc
Xem chi tiết
Bùi Phương Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
17 tháng 1 2022 lúc 8:49

\(AM=\frac{BC}{2}\Rightarrow AM=BM=CM\)

=> tg ABM cân tại M \(\Rightarrow\widehat{ABC}=\widehat{BAM}\)

Và tg ACM cân tại M \(\Rightarrow\widehat{ACB}=\widehat{CAM}\)

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)

Mà \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\)

=> tg ABC vuông tại A

Khách vãng lai đã xóa
Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 23:22

a)

Sửa đề: ΔBIM=ΔCKM

Xét ΔBIM vuông tại I và ΔCKM vuông tại K có

BM=CM(M là trung điểm của BC)

\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)

Hải Linh Vũ
Xem chi tiết
Cao Thành Đông
Xem chi tiết
jinkaka132
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 14:40

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

Nguyễn Thái Thịnh
8 tháng 12 2021 lúc 14:49

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)

Trần Nguyễn Thanh Thúy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 0:23

a: M đối xứng N qua AB

nên AM=AN; BM=BN

mà MA=MB

nên MA=MB=AN=BN

=>AMBN là hình thoi

b: Xét tứ giác ACMN có

AN//CM

AN=CM

Do đó: ACMN là hình bình hành

=>AM cắt CN tại trung điểm của mỗi dường

=>N,I,C thẳng hàng

c: BC=2*AM=10cm

=>AB=8cm

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

Trần Văn Thái
Xem chi tiết
Kiều Vũ Linh
7 tháng 3 lúc 7:50

loading...  

a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆AMB và ∆DMC có:

AM = DM (gt)

∠AMB = ∠DMC (đối đỉnh)

MB = MC (cmt)

⇒ ∆AMB = ∆DMC (c-g-c)

⇒ ∠MAB = ∠MDC (hai góc tương ứng)

Lại có:

∠MAC + ∠MAB = 90⁰ (∆ABC vuông tại A)

⇒ ∠MAC + ∠MDC = 90⁰

⇒ ∠DAC + ∠ADC = 90⁰

∆CDA có:

∠DAC + ∠CDA + ∠ACD = 180⁰ (tổng ba góc trong ∆ACD)

⇒ ∠ACD = 180⁰ - (∠DAC + ∠CDA)

= 180⁰ - 90⁰

= 90⁰

⇒ ∆ACD vuông tại C

Do ∆AMB = ∆DMC (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆ABC và ∆CDA có:

AC là cạnh chung

AB = CD (cmt)

⇒ ∆ABC = ∆CDA (hai cạnh góc vuông)

b) Do ∆ABC = ∆CDA (cmt)

⇒ BC = AD (hai cạnh tương ứng)

Do AM = DM (gt)

⇒ AM = DM = ½AD

Mà AD = BC (cmt)

⇒ AM = ½BC

Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 22:22

a: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

DO đó: ABDC là hình bình hành

Suy ra: AB=DC; AC=BD

Xét ΔABC và ΔCDA có 

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=1/2BC

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
18 tháng 9 2023 lúc 20:00

a)

Xét 2 tam giác vuông AMC và AMB có:

AM chung

BM=CM (gt)

=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)

=> AC=AB (2 cạnh tương ứng)

=> Tam giác ABC cân tại A

b)

Kẻ MH vuông góc với AB (H thuộc AB)

     MG vuông góc với AC (G thuộc AC)

Xét 2 tam giác vuông AHM và AGM có:

AM chung

\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)

=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)

=> HM=GM (2 cạnh tương ứng)

Xét 2 tam giác vuông BHM và CGM có:

BM=CM (giả thiết)

MH=MG(chứng minh trên)

=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)

=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)

=>Tam giác ABC cân tại A.