tìm x, y biết x^3+y^3=xy-8
: tìm x ; y là số nguyên biết :
a) xy-x-y= 3
b)3.xy+x-y=1
c)x^2-xy= 6x-5y - 8
a)x=3,y=3 --> 3x3-3-3=9-6=3
b)x=1,y=0--> 3x1x0+1-0=1
c)Chịu hihi
nhưng đúng hộ mình nha
bài 1 : tìm x ; y là số nguyên biết :
a) xy-x-y= 3
b)3.xy+x-y=1
c)x^2-xy= 6x-5y - 8
May ngu
Tao lv 121 lc 100k ma moi v1
TaoTM
XIn loi ban minh len con dong kinh
bài 1 : tìm x ; y là số nguyên biết :
a) xy-x-y= 3
b)3.xy+x-y=1
c)x^2-xy= 6x-5y - 8
bài 1 : tìm x ; y là số nguyên biết :
a) xy-x-y= 3
b)3.xy+x-y=1
c)x^2-xy= 6x-5y - 8
a) xy-x-y=3
x(y-1)-(y-1)=4
y-1 | -4 | -2 | -1 | 1 | 2 | 4 |
x-1 | -1 | -2 | -4 | 4 | 2 | 1 |
y | -3 | -1 | 0 | 2 | 3 | 5 |
x | 0 | -1 | -3 | 5 | 3 | 2 |
vậy (x,y)=(-3,0);(-1,-1);(0,-3);(2,5);(3,3);(5,2)
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Tìm x,y biết:
a)(25-y^2)-8(x-2009)=0
b)x^3 y=xy^3+1997
c)x+y+9=xy-7
a) 25 - y2= 8.(x -2009)2
Do 8.(x-2009)2 không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25
TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)
TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)
TH3: y = +-2 thay vào phương trình thì x không thuộc Z loại
chỉ thử đến y=+- 5 để thỏa mãn y2 nhỏ hơn hoặc bằng 25
Cuối cùng ta được y = +- 5 và x = 2009
b, x3.y=x.y3+1997x3.y=x.y3+1997
⇔x3.y−x.y3=1997⇔x3.y−x.y3=1997
Ta có: -1997 là số nguyên tố
-xy(x+y)(x-y) là hợp số
hãy tìm giá trị của x trong các biểu thức sau biết x thuộc Z : \(\dfrac{2}{x}+\dfrac{1}{y}=3\) ; \(\dfrac{2}{y}-\dfrac{1}{x}=\dfrac{8}{xy}+1\) ; \(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\) ; \(\dfrac{-3}{y}-\dfrac{12}{xy}=1\) ; \(\dfrac{x}{8}-\dfrac{1}{y}=\dfrac{1}{4}\).
help me pls!
Tìm x ,y là số tự nhiên ,biết
1) xy=2. 2) xy=5. 3)xy =6. 4)xy=8. 5)xy=12
6) xy=42 (x<y)
a, x=1; y=2 => 12
x=2; y=1 => 21
b, x=1; y=5 => 15
x=5; y=1 => 51
c, x=1; y=6 => 16
x=6;y=1 => 61
x=2; y=3=> 23
x=3; y=2 => 32
d, x=1; y=8 => 18
x=2; y=4 => 24
x=4; y=2 => 42
x=8; y=1 => 81
5,
x=3; y=4 => 34
x=4; y=3 => 43
x=2; y=6 => 26
x=6; y=2 => 62
tìm x,y
A) \(x^3+y^3=6xy-8\)
B)\(x^3-y^3=xy+8\)
C)\(x^2+xy+y^2=x^2y^2\)
Để giải phương trình này, chúng ta có thể sử dụng công thức khai triển đa thức. Với phương trình A) x^3 + y^3 = 6xy - 8, ta có thể thay thế x^3 và y^3 bằng (x + y)(x^2 - xy + y^2) và tiếp tục giải từ đó. Tương tự, chúng ta có thể áp dụng công thức khai triển đa thức cho các phương trình B) và C) để tìm giá trị của x và y.