Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Nguyễn
Xem chi tiết
Trần Hữu Ngọc Minh
10 tháng 10 2017 lúc 12:26

Ta co pt \(\Leftrightarrow x^2-4x+4+y^2+6y+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)

mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)

Nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy \(x=2;y=-3\)

TC2 Worlds
10 tháng 10 2017 lúc 12:26

\(^{x^2-4x+4+y^2+6y+9=0}\)0

\(\left(x-2\right)^2+\left(y+3\right)^2=0\)

x=2 va y=-3

TC2 Worlds
10 tháng 10 2017 lúc 12:26

ngu cho

Ut02_huong
Xem chi tiết
Hưng Phạm
5 tháng 11 2015 lúc 8:34

(x2-4x+4) + (y2+6y+9) = 0

bạn làm tiếp nhé, dáp số x=2, y=-3

Ngô Anh Huyền Trân
Xem chi tiết
Jenny phạm
Xem chi tiết
Ɲσ•Ɲαмє
12 tháng 3 2019 lúc 20:42

a) x2 - 2x + y2 - 4y + 5 = 0

 <=>x^2-2x+1 + y^2-4y+4=0 

<=>(x-1)^2 + (y-1)^2 =0 
<=>x=1 và y=2

Nguyễn Mạnh Tân
12 tháng 3 2019 lúc 20:44

a) \(x^2-2x+y^2-4y+5=0\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2++\left(y-2\right)^2=0\)

Mà \(\left(x-1\right)^2\ge0\)và \(\left(y-2\right)^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi x-1=0 và y-2=0

=> x=1 và y=2

Girl
12 tháng 3 2019 lúc 20:47

\(x^2-2x+y^2-4y+5=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

\(4x^2+y^2-8x+6y+13=0\)

\(\Leftrightarrow\left(4x^2-8x+4\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow4\left(x-1\right)^2+\left(y+3\right)^2=0\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Zoro_Mắt_Diều_Hâu
Xem chi tiết
Lê Thị Xuân Niên
Xem chi tiết
Aki Tsuki
13 tháng 7 2018 lúc 21:23

\(x^2+y^2-4x+6y+13=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^3=0\)

Vì: \(\left(x-2\right)^2+\left(y+3\right)^3\ge0\forall x;y\)

=> ''='' xảy ra khi x = 2; y = -3

Vậy.........

Akai Haruma
13 tháng 7 2018 lúc 21:32

Lời giải:
\(x^2+y^2-4x+6y+13=0\)

\(\Leftrightarrow (x^2-4x+4)+(y^2+6y+9)=0\)

\(\Leftrightarrow (x-2)^2+(y+3)^2=0\)

\((x-2)^2; (y+3)^2\ge 0, \forall x,y\Rightarrow (x-2)^2+(y+3)^2\geq 0\)

Dấu "=" xảy ra khi \((x-2)^2=(y+3)^2=0\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-3\end{matrix}\right.\)

An Phạm
Xem chi tiết
Nguyễn Xuân Tiến 24
11 tháng 12 2017 lúc 20:01

\(x^2+y^2-4x+6y+13=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)

Mà ta lại có: \(\left(x-2\right)^2+\left(y+3\right)^2\ge0\left(\forall x;y\right)\)

\(\Rightarrow\left(x-2\right)^2=0;\left(y+3\right)^2=0\Leftrightarrow x=2;y=-3\)

kuroba kaito
11 tháng 12 2017 lúc 22:10

x2 + y2 - 4x + 6y + 13 = 0

=> x2+y2-4x+6y+9+4=0

=> (x2-4x+4)+(y2+6y+9)=0

=> (x-2)2+(y+3)2=0

=> \(\left[{}\begin{matrix}x-2=0\\y+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

vậy x=2,y=-3

Phùng Khánh Linh
12 tháng 12 2017 lúc 11:02

x2 + y2 - 4x + 6y + 13 = 0

=> y2 + 2.3y + 32 + x2 - 2.2x + 22 = 0

=> ( y + 3)2 + ( x - 2)2 = 0

=> y = -3 ; x = 2

Mai Xuân Phong
Xem chi tiết
noname
2 tháng 11 2016 lúc 21:29

2 a) x2 + 4x + 5

= x2 + 2.x.2 + 22 + 1

=(x + 2)2 +1

vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x

suy ra A luôn lớn hơn hoặc bằng 1

dấu '=' xảy ra khi x+2=0 suy ra x=-2

vậy GTNN của A là 1 khi x= -2

b)x2 + y2 - 4x +6y +13=0

(x2 - 4x +4)+(y2 + 6y +9)=0

(x-2)2 + (y+3)2 =0

(x - 2)2 lớn hơn hoặc bằng 0 với mọi x

(y+3)2 lớn hơn hoặc bằng 0 với mọi y

nên để (x-2)2 + (y+3)2 =0

thì x-2=0 và y+3=0

x=2; y= -3

 

Lê Cẩm
Xem chi tiết
Phương An
17 tháng 7 2017 lúc 15:52

a) x^2 + 2x - 35 = 0

<=> (x - 5)(x + 7) = 0

<=> x = 5 hoặc x = - 7

b) 4x^2 - 12x - 27 = 0

<=> (2x - 9)(2x + 3) = 0

<=> x = 4,5 hoặc x = - 1,5

c) 9x^2 + 24x + 7 = 0

<=> (3x + 1)(3x + 7) = 0

<=> x = - 1/3 hoặc x = - 7/3

d) x^2 + y^2 - 4x + 6y + 13 = 0

<=> (x - 2)^2 + (y + 3)^2 = 0

<=> x = 2 và y = - 3

e) 25x^2 - 10x - 24 = 0

<=> (5x - 6)(5x + 4) = 0

<=> x = 1,2 hoặc x = - 0,8