Cho đường thẳng (d) y = (m+2)x + m (m là tham số)
a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
b) Tìm m để (d) cắt trục Ox, Oy tại A và B sao cho SAOB = \(\dfrac{1}{2}\left(đvdt\right)\)
Cho đường thẳng d: y = (m + 2)x+m với m là tham số
a) Tìm điểm cố định mà d luôn đi qua với mọi m.
b) Tìm m để d cắt Ox, Oy tại A và B sao cho diện tích tam giác OAB = 1⁄2.
\(a,\) Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà (d) đi qua với mọi m
\(\Leftrightarrow y_0=\left(m+2\right)x_0+m\\ \Leftrightarrow mx_0+m+2x_0-y=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(2x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\Leftrightarrow A\left(-1;-2\right)\)
Vậy \(A\left(-1;-2\right)\) là điểm cố định mà (d) đi qua với mọi m
\(b,\) PT giao Ox tại A và Oy tại B: \(\left\{{}\begin{matrix}y=0\Rightarrow\left(m+2\right)x=-m\Rightarrow x=-\dfrac{m}{m+2}\Rightarrow A\left(-\dfrac{m}{m+2};0\right)\Rightarrow OA=\left|-\dfrac{m}{m+2}\right|\\x=0\Rightarrow y=m\Rightarrow B\left(0;m\right)\Rightarrow OB=\left|m\right|\end{matrix}\right.\)
\(S_{OAB}=\dfrac{1}{2}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\Leftrightarrow\left|-\dfrac{m}{m+2}\right|\left|m\right|=1\\ \Leftrightarrow\left|-\dfrac{m^2}{m+2}\right|=1\Leftrightarrow\left[{}\begin{matrix}-\dfrac{m^2}{m+2}=1\\\dfrac{m^2}{m+2}=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-m^2=m+2\\m^2=m+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m^2+m+2=0\left(vô.n_0\right)\\m^2-m-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-1\end{matrix}\right.\)
Vậy ...
cho đường thẳng (d):y=-(2m-1)x-m+1(m là tham số và m≠1/2)
a.tìm m để đường thẳng d cắt đường thẳng (d'):y=2x+3+m tại một điểm trên trục tung
b.chứng tỏ rằng đường thẳng d luôn đi qua 1 điểm cố định với mọi m
c.tìm m để (d) cắt trục Ox,Oy lần lượt tại hai điểm A,B sao cho diện tích tam giác AOB bằng 1
a: Để (d) cắt (d') tại một điểm nằm trên trục tung thì
\(\left\{{}\begin{matrix}-2m+1< >2\\-m+1=m+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2m< >1\\-m-m=3-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >-\dfrac{1}{2}\\-2m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m< >-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-1\)
b: (d): \(y=-\left(2m-1\right)x-m+1\)
\(=-2mx+x-m+1\)
\(=m\left(-2x-1\right)+x+1\)
Tọa độ điểm cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}-2x-1=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=1\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}+1=\dfrac{1}{2}\end{matrix}\right.\)
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\-\left(2m-1\right)x-m+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\left(-2m+1\right)x=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{m-1}{-2m+1}\end{matrix}\right.\)
=>\(A\left(\dfrac{m-1}{-2m+1};0\right)\)
\(OA=\sqrt{\left(\dfrac{m-1}{-2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-1}{2m-1}\right)^2}=\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-\left(2m-1\right)\cdot x-m+1=-\left(2m-1\right)\cdot0-m+1=-m+1\end{matrix}\right.\)
vậy: B(0;-m+1)
\(OB=\sqrt{\left(0-0\right)^2+\left(-m+1-0\right)^2}=\sqrt{\left(-m+1\right)^2}\)
\(=\left|m-1\right|\)
Vì ΔOAB vuông tại O nên \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\)
\(=\dfrac{1}{2}\cdot\left|m-1\right|\cdot\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)
\(=\dfrac{\dfrac{1}{2}\left(m-1\right)^2}{\left|2m-1\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=1\)
=>\(\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=2\)
=>\(\left(m-1\right)^2=2\left|2m-1\right|\)(1)
TH1: m>1/2
Phương trình (1) sẽ tương đương với \(\left(m-1\right)^2=2\left(2m-1\right)\)
=>\(m^2-2m+1=4m-2\)
=>\(m^2-6m+3=0\)
=>\(\left[{}\begin{matrix}m=3+\sqrt{6}\left(nhận\right)\\m=3-\sqrt{6}\left(nhận\right)\end{matrix}\right.\)
TH2: m<1/2
Phương trình (2) sẽ tương đương với:
\(\left(m-1\right)^2=2\left(-2m+1\right)\)
=>\(m^2-2m+1=-4m+2\)
=>\(m^2-2m+1+4m-2=0\)
=>\(m^2+2m-1=0\)
=>\(\left[{}\begin{matrix}m=-1+\sqrt{2}\left(nhận\right)\\m=-1-\sqrt{2}\left(nhận\right)\end{matrix}\right.\)
1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
Trong mặt phẳng Oxy, cho đường thẳng (d): mx + (2 – 3m)y + m – 1 = 0 1) Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi số thực m. 2) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất. 3) Tìm m để đường thẳng (d) cắt trục tọa độ Ox, Oy lần lượt tại A, B sao cho tam giác OAB cân.
Cho hàm số y = (m – 2)x + 2 có đồ thị là đường thẳng d. a)Tìm m để d cắt Ox tại điểm có hoành độ bẳng 12 . b) Tìm m để d cắt d': y = 2x + m – 3 tại một điểm thuộc trục tung. c)Tìm điểm cố định d luôn đi qua với mọi giá trị của m. d)Với m 2. Tìm m để d cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 5. e)Với m 2. Tìm m để khoảng cách từ gốc tọa độ tới d bằng mộ
1. Cho đường thẳng (d): y = mx – 3.
a) CMR: Đường thẳng (d) luôn đi qua một điểm cố định khi m thay đổi.
b) Tìm giá trị của m để d cắt trục Ox; Oy lần lượt tại A; B sao cho số đo góc BAO = 60.
c) Tìm m để khoảng cách từ O đến d đạt giá trị lớn nhất.
a: Điểm mà (d) luôn đi qua là:
x=0 và y=m*0-3=-3
b: góc BAO=60 độ
=>góc tạo bởi (d) với trục Ox bằng60 độ
=>\(m=tan60=\sqrt{3}\)
c: y=mx-3
=>mx-y-3=0
\(d\left(O;d\right)=\dfrac{\left|0\cdot m+0\cdot\left(-1\right)-3\right|}{\sqrt{m^2+1}}=\dfrac{3}{\sqrt{m^2+1}}\)
Để d lớn nhất thì m^2+1 nhỏ nhất
=>m=0
Cho đường thẳng d:y=(m-2)x+2+m với m là tham số
a.tìm m để d cắt (d1):y=2x-2m+1 tại một điểm trên trục tung
b. tìm m để d cùng các đường thẳng d1:y=x+2 và d2:y=4-3x đồng quy
c. chứng minh d luôn đi qua 1 điểm cố định với mọi m
a: Để (d) cắt (d1) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne2\\-2m+1=m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne4\\-3m=1\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{3}\)
b: Tọa độ giao điểm của d1 và d2 là:
\(\left\{{}\begin{matrix}x+2=4-3x\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}+2=\dfrac{5}{2}\end{matrix}\right.\)
Thay x=1/2 và y=5/2 vào (d), ta được:
\(\dfrac{1}{2}\left(m-2\right)+2+m=\dfrac{5}{2}\)
=>\(\dfrac{1}{2}m-1+m+2=\dfrac{5}{2}\)
=>\(\dfrac{3}{2}m=\dfrac{3}{2}\)
=>m=1
c: (d): y=(m-2)x+m+2
=mx-2x+m+2
=m(x+1)-2x+2
Tọa độ điểm cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x+1=0\\y=-2x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\cdot\left(-1\right)+2=4\end{matrix}\right.\)
1) Cho hàm số y=(1−m)x+m+2 (với m là tham số và m+1) có đồ thị là đường thẳng (d). a) Tìm m để ( d ) song song với đường thẳng y=2x−1. b) Tìm m để (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác AOB vuông cân.
a) \(y=\left(1-m\right)x+m+2\left(d\right)\)
\(y=2x-1\left(d'\right)\)
\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}1-m=2\\m+2\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-3\end{matrix}\right.\)
\(\Leftrightarrow m=-1\)
Vậy với \(m=-1\) để \(\left(d\right)//\left(d'\right)\)
b) \(\left(d\right)\cap\left(Ox\right)=A\left(x;0\right)\)
\(\Leftrightarrow\left(1-m\right)x+m+2=0\)
\(\Leftrightarrow x=\dfrac{m-1}{m+2}\)
\(\Rightarrow A\left(\dfrac{m-1}{m+2};0\right)\)
\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m-1}{m+2}\right)^2}=\left|\dfrac{m-1}{m+2}\right|\)
\(\left(d\right)\cap\left(Oy\right)=B\left(0;y\right)\)
\(\Leftrightarrow\left(1-m\right).0+m+2=y\)
\(\Leftrightarrow y=m+2\)
\(\Rightarrow B\left(0;m+2\right)\)
\(\Rightarrow OB=\sqrt[]{\left(m+2\right)^2}=\left|m+2\right|\)
Để \(\Delta OAB\) là \(\Delta\) vuông cân khi và chỉ khi
\(\left|\dfrac{m-1}{m+2}\right|=\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-1}{m+2}=m+2\\\dfrac{m-1}{m+2}=-\left(m+2\right)\end{matrix}\right.\) \(\left(m\ne-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(m+2\right)^2=m-1\\\left(m+2\right)^2=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+2m+4=m-1\\m^2+2m+4=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+m+5=0\left(1\right)\\m^2+3m+3=0\left(2\right)\end{matrix}\right.\)
Giải \(pt\left(1\right):\Delta=1-20=-19< 0\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Giải \(pt\left(2\right):\Delta=9-12=-3< 0\)
\(\Rightarrow\left(2\right)\) vô nghiệm
Vậy không có giá trị nào của \(m\) thỏa mãn đề bài
Cho đường thẳng d : y = (m + 1) x – m + 2 (m là tham số) a. Tìm điểm I là điểm cố định mà d luôn đi qua với mọi m.
Giả sử đường thẳng d luôn đi qua điểm cố định \(I\left(x_0;y_0\right)\) \(\Rightarrow\) với mọi m ta luôn có:
\(y_0=\left(m+1\right)x_0-m+2\)
\(\Leftrightarrow m\left(x_0-1\right)+x_0-y_0+2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\x_0-y_0+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=3\end{matrix}\right.\)
Vậy \(I\left(1;3\right)\)