CHO HÌNH VUÔNG ABCD ,AB//CD
KẺ ĐƯỜNG CHÉO AC
CMR : ABC=ADC BẰNG 2 CÁCH
cho hình thang ABCD có đáy ab bằng 1/3 đáy đáy cd hai đường chéo bd và ac tại m a so sánh s tam giác abc và adc b tìm s tam giác amd biết s hình thang abcd là 40cm vuông
bài 2 Hình thang cân ABCD (AB//CD) có đường chéo DB vuông góc với cạnh BC. biết đường chéo BD cũng là tia phân giác của góc ADC.
a) tính các góc của hình thang ABCD
giải hộ tôi đâng cần gấp
\(\text{#3107}\)
a)
Vì BD là tia phân giác của \(\widehat{\text{ADC}}\)
\(\Rightarrow\widehat{\text{ADB}}=\widehat{\text{CDB}}=\dfrac{1}{2}\widehat{\text{ADC}}\)
Mà ABCD là hình thang cân
\(\Rightarrow\widehat{\text{C}}=\widehat{\text{D}}\)
\(\Rightarrow\widehat{\text{C}}=2\widehat{\text{BDC}}\)
Xét `\Delta BDC:`
\(\widehat{\text{BDC}}+\widehat{\text{CBD}}+\widehat{\text{C}}=180^0\\ \Rightarrow\widehat{\text{BDC}}+90^0+2\widehat{\text{BDC}}=180^0\\ \Rightarrow3\widehat{\text{BDC}}=90^0\\ \Rightarrow\widehat{\text{BDC}}=30^0\)
Vì \(\widehat{\text{C}}=2\widehat{\text{BDC}}\)
\(\Rightarrow\widehat{\text{C}}=2\cdot30^0\\ \Rightarrow\widehat{\text{C}}=60^0\)
Vì $\widehat{C} = \widehat{D}$
\(\Rightarrow\widehat{\text{C}}=\widehat{\text{D}}=60^0\)
Vì ABCD là hình thang cân
\(\Rightarrow\widehat{\text{A}}+\widehat{\text{D}}=180^0\left(\text{2 góc trong cùng phía bù nhau}\right)\\ \Rightarrow\widehat{\text{A}}+60^0=180^0\\ \Rightarrow\widehat{\text{A}}=120^0\)
Vì \(\widehat{\text{A}}=\widehat{\text{B}}\left(\text{ABCD là hình thang cân}\right)\)
\(\Rightarrow\widehat{\text{A}}=\widehat{\text{B}}=120^0\)
Vậy, số đo các góc trong hình thang cân ABCD là: \(\widehat{\text{A}}=\widehat{\text{B}}=120^0;\widehat{\text{C}}=\widehat{\text{D}}=60^0.\)
Cho hình vuông ABCD có cạnh bằng a. Người ta dựng hình vuông A1B1C1D1 có cạnh bằng 1/2 đường chéo của hình vuông ABCD, dựng hình vuông A2B2C2D2 có cạnh bằng 1/2 đường chéo của hình vuông A1B1C1D1 và cứ tiếp tục như vậy. Giả sử cách dựng trên có thể tiến ra vô hạn. Nếu tổng diện tích của tất cả hình vuông ABCD,A1B1C1D1,A2B2C2D2,... bằng 8 thì a bằng bao nhiêu?
Xét dãy số \(u_n=S_{A_nB_nC_nD_n}\). Ta có \(u_1=a^2\)
Ta xét hình vuông có cạnh \(x\) (diện tích là \(x^2\)). Khi đó nửa độ dài đường chéo của hình vuông này sẽ là \(\dfrac{x}{\sqrt{2}}\). Khi đó diện tích của hình vuông mới là \(\left(\dfrac{x}{\sqrt{2}}\right)^2=\dfrac{x^2}{2}\) bằng 1 nửa diện tích hình vuông ban đầu. Như vậy, ta có mối quan hệ truy hồi: \(u_{n+1}=2u_n\). Dễ thấy đây là một cấp số nhân.
Ta có \(\left(u_n\right):\left\{{}\begin{matrix}u_1=a^2\\u_{n+1}=2u_n\end{matrix}\right.\)
\(\Rightarrow S_n=\sum\limits^{\infty}_{i=1}u_i=a^2\left(\sum\limits^{\infty}_{i=0}\dfrac{1}{2^i}\right)=2a^2\)
(Đẳng thức quen thuộc \(\sum\limits^{\infty}_{i=0}\dfrac{1}{2^i}=2\))
Cho \(S_n=8\) \(\Rightarrow2a^2=8\Leftrightarrow a=2\).
Vậy \(a=2\) thỏa mãn ycbt.
2/Cho h ình thoi có độ dài hai đường chéo bằng 6cm và 8cm .Tính độ dài cạnh hình thoi?
3/Cho hình thang ABCD có AB // CD, AB = 4, CD = 12.Tính độ dài đường TB của hình thang
4/Tam giác ABC vuông tại A, BC = 7cm, MB = MC, M BC.Tính độ dài AM?
5/Cho tam giác ABC có M,N theo thứ tự là trung điểm của AB và AC.Biết MN = 4,5 cm.Tính độ dài cạnh BC.
6/Cho hình thang ABCD (AB//CD),gọi E,F theo thứ tự là trung điểm của AD và BC.Biết EF = 6cm, AB = 4cm ,tính độ dài cạnh CD?
7/Hình thang có độ dài đáy lớn gấp đôi đáy nhỏ . Độ dài đường trung bình là 12 cm. Tính độ dài 2 đáy.
8/Cho hình chữ nhật ABCD, hai đường chéo AC và BD cắt nhau tại O, biết AO = 3cm, Tính độ dài BD?
9/Cho ABC và một điểm O tuỳ ý . Vẽ A/B/C/ đối xứng với ABC qua điểm O .
10/Cho hình vuông ABCD có độ dài đường chéo bằng 10cm.Tính cạnh hình vuông?
11/Cho hình vuông ABCD có độ dài cạnh bằng 3.Tính độ dài đường chéo của hình vuông?
12/T ính độ dài đường trung tuyến ứng với cạnh huyền của một tam giác vuông có các
cạnh góc vuông bằng 3 cm v à 4 cm.
có làm thì mới có ăn
Cho hình thang ABCD đáy bé AB bằng 1/3 đáy lớn CD. Hai đường chéo cắt nhau tại O.
a. So sánh diện tích tam giác ABC và diện tích tam giác ADC.
b. Tính diện tích tam giác ADC biết diện tích tam giác AOD bằng 4,5 cm2.
BN VÔ TL CÂU HỎI CỦA MIK NHÉ
a)SABC = 1/3 SADC VÌ
AB = 1/3 CD
CHIỀU CAO HẠ TỪ C XUỐNG AB BẰNG CHIỀU CAO HẠ TỪ A XUỐNG CD (đều bằng chều cao hình thang ABCD)
b)MÀ HAI TAM GIÁC NAY CHUNG ĐÁY AC NÊN CHIỀU CAO HẠ TỪ B XUỐNG AC BẰNG 1/3
CHIỀU CAO HẠ TỪ D XUÔNG AC
SAOB = 1/3 SAOD VÌ
CHUNG ĐÁY AO
CHIỀU CAO HẠ TỪ B XUÔNG AO BẰNG 1/3 CHIỀU CAO HẠ TỪ D XUỐNG AO
SUY RA SAOD = 3/4 SABC
SABC= 4,5 : 1/3 = 13,5 CM2
SABC = 1/3 SACD ( cmt )
SACD= 13,5 : 1/3 = 40,5 CM2
Bài 1. Cho hình thang ABCD có đáy AB > đáy CD và hai đường chéo AC và BD vuông góc. Trên đáy AB lấy M sao cho AM có độ dài bằng đường trung bình của hình thang ABCD. Chứng minh : CA là đường phân giác góc MCD .
Bài 2: Cho tam giác ABC gọi M là trung điểm của của cạnh AB, kẻ đường phân giác trong BE của góc ABC. Dựng AI vuông góc với BE, cắt BC tại D
a)Tam giác ABD là tam giác gì? c/m
b)C/m: MI // BC
c)Gọi N là giao điểm của MI và AC. C/m: AN = NC
Giúp em với ạ,em cảm ơn ạ
Hình vuông AEBF có cạnh bằng 1m,hình vuông ABCD có cạnh AB là một đường chéo của hình vuông AEBF A) tính S của hình vuông ABCD B) Tính độ dài đường chéo AB
a: ABCD là hình vuông
=>AB=BC=CD=DA và \(\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{ADC}=90^0\) và AC là phân giác của \(\widehat{DAB}\) và DB là phân giác của góc ADC; BD là phân giác của góc ABC
AC là phân giác của góc DAB
=>\(\widehat{CAB}=\dfrac{1}{2}\widehat{DAB}=\dfrac{1}{2}\cdot90^0=45^0\)
AEBF là hình vuông
=>AB là phân giác của \(\widehat{FAE}\) và \(\widehat{FAE}=90^0\)
=>\(\widehat{BAE}=\dfrac{1}{2}\cdot\widehat{EAF}=45^0\)
\(\widehat{BAE}=45^0\)
\(\widehat{BAC}=45^0\)
Do đó: \(\widehat{BAE}=\widehat{BAC}=45^0\)
=>AE và AC là hai tia trùng nhau
=>A,E,C thẳng hàng
BD là phân giác của góc ABC
=>\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)
AEBF là hình vuông
=>BA là phân giác của góc EBF
=>\(\widehat{ABE}=\dfrac{1}{2}\cdot\widehat{FBE}=45^0\)
=>\(\widehat{ABE}=\widehat{ABD}\)
=>BE,BD là hai tia trùng nhau
=>B,E,D thẳng hàng
B,E,D thẳng hàng
A,E,C thẳng hàng
Do đó: BD cắt AC tại E
ADCB là hình vuông
=>AC=BD và AC vuông góc với BD tại trung điểm của mỗi đường
=>AC vuông góc BD tại E và E là trung điểm chung của AC và DB
E là trung điểm của AC nên AC=2AE=2(cm)
E là trung điểm của BD nên BD=2EB=2(cm)
Xét tứ giác ADCB có DB\(\perp\)AC
nên \(S_{ADCB}=\dfrac{1}{2}\cdot DB\cdot AC=\dfrac{1}{2}\cdot2\cdot2=2\left(cm^2\right)\)
b: ADCB là hình vuông
=>\(S_{ADCB}=AB^2\)
=>\(AB^2=2\)
=>\(AB=\sqrt{2}\left(cm\right)\)
Cho hình thang vuông ABCD có hai đáy là AB và CD . Biết AB = 1/3 CD .Hai đường chéo AC và BD cắt nhau ở E. So sánh diện tích hai tam giác ABD và ADC
Cho tứ diện ABCD có tam giác ABD đều cạnh bằng 2, tam giác ABC vuông tại B, B C = 3 . Biết khoảng cách giữa hai đường thẳng chéo nhau AB và CD bằng 11 2 . Khi đó độ dài cạnh CD là
A. 2
B. 2
C. 1
D. 3