Cho pt x^2 + 2(m+1)x +4m - 4 =0 a) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn x1^2 + x2^2 + 3x1.x2 = 0
\(x^2+2\left(m+1\right)+4m-4=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)
\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)
\(\Leftrightarrow4m^2+8m+4+4m-4=0\)
\(\Leftrightarrow4m^2+12m=0\)
\(\Leftrightarrow4m\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)
Cho pt x2-4x+m=0
a)Biết pt có 1 nghiệm bằng (-1). Tính nghiệm còn lại
b)Xác định m để pt có 2 nghiệm x1,x2 thỏa mãn (3x1+1).(3x2+1)=4
a) Thay x=-1 vào pt có:5+m=0 <=> m=-5
Thay m=-5 vào pt có:\(x^2-4x-5=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy nghiệm còn lại là 5
b) Để pt có hai nghiệm <=> \(\Delta\ge\) <=>\(16-4m\ge0\) <=>\(m\le4\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)
Có \(\left(3x_1+1\right)\left(3x_2+1\right)=4\)
\(\Leftrightarrow9x_1x_2+3\left(x_1+x_1\right)+1=4\)
\(\Leftrightarrow9m+3.4+1=4\)
\(\Leftrightarrow m=-1\) (thỏa)
Vậy m=-1
a) `x=-1` là nghiệm `=> (-1)^2-4.(-1)+m=0 <=> m=-5`
`=>` PT: `x^2-4x-5=0 =>` Nghiệm còn lại là: `x=5`
b) PT có 2 nghiệm phân biệt `<=> \Delta'>0 <=> 2^2-m>0 <=> m < 4`
Viet: `x_1+x_2=4`
`x_1x_2=m`
Theo đề: `(3x_1+1)(3x_2+1)=4`
`<=> 3x_1x_2+3(x_1+x_2)+1=4`
`<=> 3m+3.4+1=4`
`<=> m=-9`
Vậy `m=-9`.
a) Thế \(x=-1\) vào pt,ta được \(1+4+m=0\Rightarrow m=-5\)
b) \(\Delta=\left(-4\right)^2-4m=4\left(4-m\right)\ge0\Rightarrow m\le4\)
Áp dụng hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)
Ta có: \(\left(3x_1+1\right)\left(3x_2+2\right)=9x_1x_2+3\left(x_1+x_2\right)+1=9m+13=4\)
\(\Rightarrow m=-1\)
x2 - (2m-1)x + m2 - 1 = 0
Tìm m để PT có nghiệm thỏa (x1 - x2 )2 = x1 -3x2
Để pt có nghiệm \(\Leftrightarrow\Delta=-4m+5\ge0\) \(\Leftrightarrow m\le\dfrac{5}{4}\)
\(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)
\(\Leftrightarrow-4m+5=x_1-3x_2\) (1)
Kết hợp (1) và viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\\x_1x_2=m^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=6m-6\\x_1-3x_2=5-4m\\x_1x_2=m^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{3m-3}{2}\\x_1=5-4m+3x_2=\dfrac{m+1}{2}\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{3m-3}{2}\right)\left(\dfrac{m+1}{2}\right)=m^2-1\)
\(\Leftrightarrow1=m^2\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)
Vậy...
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0
Cho x² - 2(m+1)x + m² +2 = 0
Với giá trị nào của m để pt có 2 nghiệm x1, x2. Tìm m để 3x1-x2 =0
cho pt : x2-3x-7=0 có 2 nghiệm x1,x2 không giải pt tính : B= X12 + X22 ; D= X13 + X23 ; F= \((\)3x1+x2\()\)\((\)3x2+x1\()\); C= \(|\) x1-x2\(|\)
x1+x2=3; x1*x2=-7
B=(x1+x2)^2-2x1x2
=9-2*(-7)=23
D=(x1+x2)^3-3x1x2(x1+x2)
=3^3-3*(-7)*3
=27+63=90
F=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=10*(-7)+69
=-1
\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)
c4
cho pt ẩn x: \(x^2-2x-m^2-4=0\)(1)
a/ giải pt đã cho khi m=\(\dfrac{1}{2}\)
b/ chứng minh pt luôn có 2 nghiệm phân biệt vs mọi m
c/ tính giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho 2x1,x2(2-3x1)=2
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Giải giúp mình với ạ !
Cho PT : 2x2 + (2m-1)x +m-1=0.Không giải PT , tìm m để PT có hai nghiệm . tìm m để x1 , x2 thỏa mãn 3x1 - 4x2 = 11. tìm m để pt có 2 nghiệm đều dương. tìm hệ thức liên hệ giữa các nghiệm ko phụ thộc vào m
\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)
Để phương trình có hai nghiệm phân biệt thì 2m-3<>0
hay m<>3/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)
Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)
\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)
\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)
\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)
\(\Leftrightarrow48m^2-250+85=0\)
Đến đây bạn chỉ cần giải pt bậc hai là xong rồi
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)
\(=\left(2m-3\right)^2+1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)
Ta có \(3x_1-4x_2=11\left(3\right)\)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)
\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)
Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=4,125\)
Cho pt : x^2-2?(m-1)x+m+1=0
a) GIẢI pt vs m=-4
b) Vs giá trị nào của m thì pt có 2 nghiệm phân biệt
c) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn x1=3x2