(x-2)^2016+|y^2-9|^2017=0
Cho các số a,b,c,d khác 0. Tính
T= x^2017 + y^2017+z^2017+t^2017
Biết x,y,z,t thỏa mãn :
x^2016+y^2016+z^2016+t^2016/a^2+b^2+c^2+d^2=x^2016/a^2+y^2016/b^2+z^2016/c^2+t^2016/d^2
(x-2016/2017)2+(y+2016?2017)2=0
\(\left(\dfrac{x-2016}{2017}\right)^2+\left(\dfrac{y+2016}{2017}\right)^2=0\)
Với mọi \(x\in R\) ta có: \(\left(\dfrac{x-2016}{2017}\right)^2+\left(\dfrac{y+2016}{2017}\right)^2\ge0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=2016\\y=-2016\end{matrix}\right.\)
Cho các số a,b,c,d khác 0. Tính \(T=x^{2017}+y^{2017}+z^{2017}+t^{2017}\)
Biết x,y,z,t thỏa mãn: \(\dfrac{x^{2016}+y^{2016}+z^{2016}+t^{2016}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2016}}{a^2}+\dfrac{y^{2016}}{b^2}+\dfrac{z^{2016}}{c^2}+\dfrac{t^{2016}}{d^2}\)
|x+5|+(3y-4)^2016=0
(5x-y)^2016+|x^2-4|^2017<=0
(2x-1)^2014+(y-2/5)^2016+|x+y+z|=0
|x-1|+|x-2|+|y-3|+|x-4|=3
Cho |x-2|+|y-1|+(x+y-z)^2016=0.Tính giá trị của A=5. x^2. y^2016. z^2017
Thức hiện phép tính hợp lý nhất :
a) 2015 x 2016 + 2016 x 2017 - 2016 x 4030
b)3 x |-9| - 2 x 5 + 20170 : 12017
c)52 x 3 + 22 x { 13 + 5 . [30 : 2 x 5 - (34 - 30 x 2)0] }
a 2016 x ( 2015 + 2017 - 4030 ) = 2016 x 2 = 4032
Cho hai số x,y thỏa mãn (x-2)^2016 + |y+1| = 0. Tính giá trị biểu thức A= 2.x^2.y^2016 - 3.(x+ y)^2017
Tổng x,y thỏa mãn:(x-2016)^2+(y+ 2017)^2=0
\(\left(x-2016\right)^2+\left(y+2017\right)^2=0\)
\(\Leftrightarrow\begin{cases}x-2016=0\\y+2017=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2016\\y=-2017\end{cases}\)
Cho hai số x,y thỏa mãn (x-2)^2016 + |y+1| = 0 tính giá trị biểu thức A= 2.x^2.y^2016 - 3.(x+y)^2017