Câu 1 : Tìm GTLN
a) \(A=\dfrac{2003}{\left(x-2\right)^2+\left(x-y\right)^6+3}\)
b) \(B=3-\left(2x+\dfrac{1}{3}\right)^6\)
c) \(C=\dfrac{x^{2016}+2017}{x^{2016}+2015}\)
BT: Tìm x biết:
\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
BT1: Tìm x, biết:
6) \(\dfrac{x+1}{2017}+\dfrac{x+2}{2016}=\dfrac{x+3}{2015}-1\)
tính giá trị biểu thức: M=\(\dfrac{a-b}{2015}+\dfrac{b-c}{2016}+\dfrac{c-a}{2017}\) biết \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)
tìm x biết
a) \(\dfrac{1}{2}x+2\dfrac{1}{2}=3\dfrac{1}{2}x-\dfrac{3}{4}\)
b) \(\dfrac{2}{3}x-\dfrac{2}{5}=\dfrac{1}{2}x-\dfrac{1}{3}\)
c) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x+1\right)=0\)
d) \(\dfrac{2}{3}-\dfrac{1}{3}\left(x-\dfrac{3}{2}\right)-\dfrac{1}{2}\left(2x+1\right)=5\)
e) \(\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)
So sánh giá trị của A và B với:
A = \(\dfrac{2017^{2016-1}}{2017^{2017-1}}\) B = \(\dfrac{2017^{2015+1}}{2017^{2016+1}}\)
cho \(\dfrac{x_1}{x_2}=\dfrac{x_2}{x_3}=\dfrac{x_3}{x_4}...=\dfrac{x_{2016}}{x_{2017}}\)
chứng minh: \(\left(\dfrac{x_1+x_2+x_3+...+x_{2016}}{x_2+x_3+x_4+...+x_{2017}}\right)^{2016}=\dfrac{x_1}{x_{2017}}\)
1) Không dùng máy tính hãy so sánh:
A=\(\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2006}\) với 4
2) So sánh A và B biết:
A=\(\left(100^{99}+99^{99}\right)^{100}\)
B=\(\left(100^{100}+99^{100}\right)^{99}\)
3) Chứng tỏ rằng:
\(\left(2003^n+1\right)\left(2003^n+2\right)⋮6\forall n\in N\)
Tìm x biết
a) |2-2011|+|x-2012|=1
b) |x-2010|+|x-2011|+|x-2012|=2
c) |x-2014|+|x-2015|+|x-2016|+|x-2017|=4