\(=>\left(\dfrac{x+4}{2014}+1\right)+\left(\dfrac{x+3}{2015}+1\right)=\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+1}{2017}+1\right)\)
=> \(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
=> (x+2018).\(\left(\dfrac{1}{2014}+\dfrac{1}{2015}\right)=\left(x+2018\right).\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
=> (x+2018).\(\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\) = 0
Mà \(\dfrac{1}{2014}>0;\dfrac{1}{2015}>0;\dfrac{1}{2016}>0;\dfrac{1}{2017}>0\)
=>\(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\)
=> \(x+2018=0\)
=>x = 0-2018
=> x = 0+(-2018)
=> x = -2018