Cho tam giác đều ABC và điểm M bất kì nằm trong tam giác đó. Đường thẳng đi qua điểm M và vuông góc với BC tại điểm H. Đường thẳng đi qua điểm M và vuông góc với CA tại điểm K. Đường thẳng đi qua điểm M và vuông góc với AB tại điểm T.
Cho tam giác đều ABC và điểm M bất kì nằm trong tam giác đó. Đường thẳng đi qua điểm M và vuông góc với BC tại điểm H. Đường thẳng đi qua điểm M và vuông góc với CA tại điểm K. Đường thẳng đi qua điểm M và vuông góc với AB tại điểm T
Chứng minh rằng MH + MK + MT không phụ thuộc vào vị trí của điểm M
Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD, BE và CF. Đường thẳng đi qua điểm M và song song với AD cắt cạnh BC tại điểm H. Đường thẳng đi qua điểm M và song song với BE cắt cạnh AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cắt cạnh BA tại điểm T.
Chứng minh rằng M H A D + M K B E + M T C F = 1
Gọi diện tích các hình tam giác ABC, MAB, MAC, MBC lần lượt là S, S 1 , S 2 , S 3 . Ta có:
S = S 1 + S 2 + S 3
Trong đó: S = 1/2 AD.BC = 1/2 BE. AC = 1/2 CF. AB
S 1 = 1/2 MT. AB
S 2 = 1/2 MK. AC
S 3 = 1/2 MH. BC
Vẽ hình theo cách diễn đạt sau:
a) Cho góc xOy=60°.M là trung điểm bất kì nằm trong góc xOy. Vẽ MA vuông góc với Ox(A€Ox),AB vuông góc với Oy(B€Oy).Vẽ đường thẳng d đi qua M và song song với Oy
b) Vẽ góc AOB=60°Lấy điểm M nằm trong góc AOB. qua M vẽ, đường thẳng m song song với OA, cắt OB tại C và đường thẳng n song song OB cắt OA tại D
c) Vẽ tam giác ABC. Vẽ đường thẳng d1 đi qua B và vuông góc với AB. Vẽ đường thẳng d2 đi qua C và song song với AB. Gọi D là giao điểm của d1 và d2
d) cho ba điểm A B, C bất kì.Hãy vẽ các đường trung trực của các đoạn thẳng AB, BC, CA
a
b
c
d
ĐÃ VẼ LẠI 2 LẦN.LẦN NÀY LÀ LẦN 3
=> CUỘC ĐỜI ĐEN NHỌ CỦA COOL KID :V
Cho tam giác nhọn ABC có AB<AC, các đường cao AD, BE, CF cắt nhau tại H. ĐƯờng thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại điểm K. Gọi M là trung điểm của BC, I là trung điểm của AK
a) CHứng minh: BE<CF và \(IM=\dfrac{1}{2}AH\)
b) Gọi G là trọng tâm của tam giác ABC. CHứng minh: 3 điểm H, G, I thẳng hàng.
c) CM: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
a) Ta có:
\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\) ⇒ \(BH\text{//}KC\)
\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\) ⇒ \(CH\text{//}BK\)
\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)
⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC
⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)
Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)
⇒ \(IM\) là đường trung bình của \(\Delta AHK\)
⇒ \(IM=\dfrac{1}{2}AH\) \(\left(ĐPCM\right)\)
c)
Ta có:
\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)
\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)
\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)
⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)
⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\) \(\left(ĐPCM\right)\)
Cho tam giác ABC.Ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ABD và ACE
a/ chứng minh CB=BE và CD vuông góc với BE
b/ kẻ đường thẳng đi qua A và vuông góc với BC tại H
CM đường thẳng AH đi qua trubg điểm của DE
c/ láy K nằm trong tam giác ABD sao cho góc ABK =30 độ , BA=BK. CM AK=KD
Cho tam giác ABC có góc A = 135 độ ,kẻ AH vuông góc với BC (H thuộc BC) . Đường thẳng đi qua B và vuông góc với AC cắt HA và CA lần lượt ở E và K.
a)Tam giác ABK là tam giác gì? Vì sao?
b) CM: AE=BC.
c) Gọi N là trung điểm của KE, đường thẳng đi qua N và vuông góc với KE cắt EC tại M. CM M là trung điểm của EC.
a, ^BAC + ^BAK = 180 (kề bù)
^BAC = 135 (gt)
=> ^BAK = 45
xét ΔAKB có : ^AKB = 90
=> ΔAKB vuông cân (dấu hiệu)
b, ^KBC = 90 - ^KCB
^CAH = 90 - ^ACH
=> ^CAH = ^ABK
^CAH = ^KAE (đối đỉnh)
=> ^ABK = ^KAE
xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90
AK = KB do ΔAKB cân tại K (câu a)
=> ΔAKE = ΔBKC (cgv-gnk)
=> AE = BC (định nghĩa)
c, kẻ MK
xét ΔMNE và ΔMNK có : MN chung
^MNE = ^MNK = 90
NE = NK do N là trung điểm của EK (Gt)
=> ΔMNE = ΔMNK (2cgv)
=> MN = MK (định nghĩa) (1)
^EMN = ^KMN (định nghĩa) (2)
MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)
=> ^EMN = MCK (đồng vị)
^NMK = ^MKC (so le trong)
và (2)
=> ^MCK = ^MKC
=> ΔMKC cân tại M (dấu hiệu)
=> MK = MC (định nghĩa) và (1)
=> ME = MC mà M nằm giữa C và E
=> M là trung điểm của EC
Tam giác ABC vuông cân tại A ,M là 1 điểm trên AC ,I là trung điểm của BM ,N là trung điểm của AC .Đường thẳng đi qua A và vuông góc với IN căt đường thẳng đi qua C và vuông góc với AC tại E .chứng minh IN=1/2 AEtam giác ABC vuông cân tại A ,M là 1 điểm trên AC ,I là trung điểm của BM ,N là trung điểm của AC .Đường thẳng đi qua A và vuông góc với IN căt đường thẳng đi qua C và vuông góc với AC tại E .chứng minh IN=1/2 AE
a) Cho hai tam giác ABC và DBC. Kẻ đường cao AH của tam giác ABC. Kẻ đường cao DK của tam giác DBC. Gọi S là diện tích của tam giác ABC. Gọi S' là diện tích của tam giác DBC
Chứng minh rằng : \(\dfrac{S'}{S}=\dfrac{DK}{AH}\)
b) Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD, BE và CF. Đường thẳng đi qua điểm M và song song với AD cắt cạnh BC tại điểm H. Đường thẳng đi qua điểm M và song song với BE cắt cạnh AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cắt cạnh BA tại điểm T
Chứng minh rằng \(\dfrac{MH}{AD}+\dfrac{MK}{BE}+\dfrac{MT}{CF}=\)
Cho tam giác ABC. Ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ABD và ACE.
a) CMR CD = BE và CD vuông góc với BE.
b) Kẻ đường thẳng đi qua A vuông góc với BC tại H. CMR: Đường thẳng AH đi qua trung điểm DE.
c) Lấy điểm K nằm trong tam giác ABD sao cho góc ABK bằng 30độ, BA = BK. CMR: AK = KD