Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có ba chữ số ?
A. 261
B. 120
C. 102
D. 216
Bài 5: Cho các chữ số 0 ; 2 ; 6 ; 9. Hỏi:
A) Lập được bao nhiêu số tự nhiên có 3 chữ số từ các chữ số trên?
B) Lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau từ các số trên?
C) Lập được bao nhiêu số lẻ có 3 chữ số từ các chữ số trên?
D) Lập được bao nhiêu số chẵn có 4 chữ số từ các số trên?
Bài này là bài học thêm mà mình thì chỉ biết cách đếm thôi. Các bạn bạn nào biết giải bài này bằng lời giải và phép tính thì giúp mình với. Mình cảm ơn
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách
Câu 5: Từ các số 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau?
A. 108
B. 90
C. 120
D. 60
Câu 5: Từ các số 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau?
A. 108
B. 90
C. 120
D. 60
Câu 5: Từ các số 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau?
A. 108
B. 90
C. 120
D. 60
Câu 5: Từ các số 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau?
A. 108
B. 90
C. 120
D. 60
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có ba chữ số ?
A.261
B. 120
C. 102
D. 216
Đáp án là D.
Gọi số cần lập có dạng a b c
• a có 6 cách chọn; b có 6 cách chọn; c có 6 cách chọn.
• Vậy có 6.6.6 = 216 số.
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số?
A. 145
B. 168
C. 105
D. 210
Đáp án B
Phương pháp: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 ) , tìm số cách chọn cho các chữ số a, b,c sau đó áp dụng quy tắc nhân.
Cách giải: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 )
Có 4 cách chọn c.
Có 6 cách chọn a.
Có 7 cách chọn b.
Vậy có 4.6.7 = 168 số.
Chú ý và sai lầm: Các chữ số a, b, c không yêu cầu khác nhau.
Câu 1: Từ các số 1; 2; 3; 4; 5; 6; 7. Có thể lập được bao nhiêu số tự nhiên lẻ có 5 chữ số đôi một khác nhau.
Câu 2: Cho tập A gồm các số 0; 1; 2; 3; 4; 5.
a) Có bao nhiêu số tự nhiên có 4 chữ số khác nhau?
b) Chọn ngẫu nhiên 1 số tự nhiên từ các số thành lập ở trên. Tính xác suất để chọn được số chẵn.
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Từ các chữ số 1, 2, 3, 4, 5, 6, ta lập ra số tự nhiên gồm ba chữ số, chia hết cho 5. Có thể lập được bao nhiêu số như thế?
Việc lập số tự nhiên gồm ba chữ số chia hết cho 5 là thực hiện 3 hành động liên tiếp: chọn chữ số hàng đơn vị, chọn chữ số hàng chục, chọn chữ số hàng trăm.
chọn chữ số hàng đơn vị: Có 1 cách chọn (số 5).
chọn chữ số hàng chục: Có 6 cách chọn.
chọn chữ số hàng trăm: Có 6 cách chọn.
Theo quy tắc nhân, số số tự nhiên lập được là: 1.6.6=36 (số).
từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau?
mn giải giúp mình ạ=((
Gọi abc là stn có ba chữ số khác nhau cần tìm
TH1: c = {0} -> 1cc TH2: c = {2;4;6} -> 3cc
a \ {c} -> 6cc a \ {0;c) -> 5cc
b \ {a;c} -> 5cc b \ {a;c} -> 5cc
<=>(6*5)+(3*5*5)=105 số
Từ các chữ số: 1; 2; 3; 4; 5; 6.
a) Có thể lập được bao nhiêu số có ba chữ số khác nhau?
b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho 3?
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
Từ các chữ số 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên chia hết cho 6, gồm ba chữ số đôi một khác nhau?
A.8
B. 24
C. 6
D. 12