Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2018 lúc 17:24

Đáp án C

vì 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2017 lúc 4:21

Đáp án B

Sử dụng công thức

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:16

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \cos \left( {2x - \frac{\pi }{3}} \right) \le 1 \Leftrightarrow  - 2 \le 2{\rm{cos\;}}\left( {2x - \frac{\pi }{3}} \right) \le 2\;\; \Leftrightarrow  - 3 \le 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1 < 1\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \sin x \le 1,\;\; - 1 \le \cos \alpha  \le 1\;\; \Leftrightarrow  - 2 \le \sin x + \cos x \le 2\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = \sin x + \cos x\) là \(T = \left[ { - 2;2} \right]\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:28

a) Tập giá trị của hàm số\(y = \sin x\) là \(\left[ { - 1;1} \right]\)

b) Đồ thị hàm số \(y = \sin x\) nhận O là tâm đối xứng.

Như vậy hàm số \(y = \sin x\) là hàm số lẻ.

c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)

Như vậy, hàm số \(y = \sin x\) có tuần hoàn .

d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:57

Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \(-1\le sinx\le1\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\sin x\) là \(T = \left[ { - 2;2} \right]\).

Pánh Pao Chay
Xem chi tiết
Hồng Phúc
2 tháng 8 2021 lúc 13:47

Đặt \(sin^24x=t\left(t\in\left[0;1\right]\right)\)

\(y=1-8sin^22x.cos^22x+2sin^42x\)

\(=1-2sin^24x+2sin^42x\)

\(\Rightarrow y=f\left(t\right)=1-2t+2t^2\)

\(y_{min}=min\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=\dfrac{1}{2}\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=1\)

Mai Thanh Thái Hưng
Xem chi tiết
I don
8 tháng 5 2022 lúc 15:29

\(Vì-1\le\sin x\le1\)

\(\Rightarrow-2\le2\sin x\le2\)

\(\Rightarrow3\le5+2\sin x\le7\)

\(\Rightarrow3\le y\le7\)

\(Vậy\) \(y_{max}=7\)

       \(y_{min}=3\)

Trần Mun
Xem chi tiết

1: Ta có: \(-1<=\sin\left(2x+\frac{\pi}{4}\right)\le1\)

=>\(-3\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)\le3\)

=>\(-3-1\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)-1\le3-1\)

=>-4<=y<=2

=>Tập giá trị là T=[-4;2]

\(y_{\min}=-4\) khi \(\sin\left(2x+\frac{\pi}{4}\right)=-1\)

=>\(2x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\)

=>\(2x=-\frac34\pi+k2\pi\)

=>\(x=-\frac38\pi+k\pi\)

2: \(0\le cos^2x\le1\)

=>\(0\ge-5\cdot cos^2x\ge-5\)

=>\(0+3\ge-5\cdot cos^2x+3\ge-5+3\)

=>3>=y>=-2

=>Tập giá trị là T=[-2;3]

\(y_{\max}=3\) khi \(cos^2x=1\)

=>\(\sin^2x=0\)

=>sin x=0

=>\(x=k\pi\)

\(y_{\min}=-2\) khi \(cos^2x=0\)

=>cosx=0

=>\(x=\frac{k\pi}{2}\)

3: \(-1\le cosx\le1\)

=>\(-3\le3\cdot cosx\le3\)

=>\(-3+4\le3\cdot cosx+4\le3+4\)

=>\(1\le3\cdot cosx+4\le7\)

=>\(\frac51\ge\frac{5}{3\cdot cosx+4}\ge\frac57\)

=>\(\frac57\le y\le5\)

=>Tập giá trị là \(T=\left\lbrack\frac57;5\right\rbrack\)

\(y_{\min}=\frac57\) khi cosx=1

=>\(x=k2\pi\)

\(y_{\max}=5\) khi cosx=-1

=>\(x=\pi+k2\pi\)

4: \(y=\sin^2x-4\cdot\sin x+8\)

\(=\sin^2x-4\cdot\sin x+4+4\)

\(=\left(\sin x-2\right)^2+4\)

Ta có: \(-1\le\sin x\le1\)

=>\(-1-2\le\sin x-2\le1-2\)

=>\(-3\le\sin x-2\le-1\)

=>\(1\le\left(\sin x-2\right)^2\le9\)

=>\(5\le\left(\sin x-2\right)^2+4\le13\)

=>5<=y<=13

=>Tập giá trị là T=[5;13]

\(y_{\min}=5\) khi sin x-2=-1

=>sin x=1

=>\(x=\frac{\pi}{2}+k2\pi\)

\(y_{\max}\) =13 khi sin x-2=-3

=>sin x=-1

=>\(x=-\frac{\pi}{2}+k2\pi\)

vvvvvvvv
Xem chi tiết