trong mặt phẳng xOy cho điểm M(2;3). lập pt dường thẳng d đi qua M, sao cho khoảng cách từ o(0;0) đến đường thẳng d lớn nhất
Trong không gian với hệ tọa độ Descartes Oxyz, cho hai điểm A(3, 2, 1) và B - 1 ; 4 ; - 3 . Điểm M thuộc mặt phẳng (xOy) sao cho M A - M B lớn nhất là
A. M - 5 ; 1 ; 0
B. M(5, 1, 0)
C. M 5 ; - 1 ; 0
D. M - 5 ; - 1 ; 0
Chọn B.
Dễ thấy A, B nằm khác phía so với mặt phẳng (xOy). Gọi B’ là điểm đối xừng với B qua (xOy). Thế thì B ' - 1 ; 4 ; 3 và M B = M B ' . Khi đó
Đẳng thức xảy ra khi và chỉ khi M, A, B’ thẳng hàng và M nằm ngoài đoạn AB’. Như vậy M cần tìm là giao điểm của đường thẳng AB’ và mặt phẳng (xOy). Đường thẳng AB có phương trình
Từ đó tìm được M(5, 1, 0).
Trong mặt phẳng xOy, cho hình vuông ABCD , M là trung điểm AB,N thuộc AC sao cho AN=3NC . Viết phương tình đường thẳng CD biết M(1;2) , N(2;-1)
\(\overrightarrow{MN}=\left(1;-3\right)\Rightarrow MN=\sqrt{10}\)
Đặt \(AB=a\)
Qua N kẻ đường thẳng song song BC cắt AB và CD lần lượt tại P và Q, gọi F là trung điểm CD \(\Rightarrow MF\) song song và bằng BC
Theo Talet: \(\dfrac{PN}{BC}=\dfrac{AP}{AB}=\dfrac{AN}{AC}=\dfrac{3}{4}\Rightarrow PN=\dfrac{3a}{4}\) ; \(DQ=AP=\dfrac{3a}{4}\) ; \(MP=NQ=\dfrac{a}{4}\)
\(\Rightarrow MN^2=10=MP^2+PN^2=\dfrac{a^2}{16}+\dfrac{9a^2}{16}\Rightarrow a=4\)
\(\Rightarrow MF=4\) ; \(NQ=FQ=\dfrac{a}{4}\Rightarrow FN=\sqrt{NQ^2+FQ^2}=a\sqrt{2}\) ;
Đặt \(F\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MF}=\left(x-1;y-2\right)\\\overrightarrow{NF}=\left(x-2;y+1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y-2\right)^2=MF^2=16\\\left(x-2\right)^2+\left(y+1\right)^2=FN^2=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}F\left(1;-2\right)\\F\left(\dfrac{17}{5};-\dfrac{6}{5}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{MF}=\left(0;-4\right)=-4\left(0;1\right)\\\overrightarrow{MF}=\left(\dfrac{12}{5};-\dfrac{16}{5}\right)=\dfrac{4}{5}\left(3;-4\right)\end{matrix}\right.\)
Phương trình CD:
\(\left[{}\begin{matrix}0\left(x-1\right)+1\left(y+2\right)=0\\3\left(x-\dfrac{17}{5}\right)-4\left(y+\dfrac{6}{5}\right)=0\end{matrix}\right.\)
Trong mặt phẳng xOy cho điểm M(9;1) . Lập phương trình đường thẳng d đi qua điểm M cắt 2 tia Ox , Oy lần lượt tại 2 điểm A,B sao cho diện tích tam giác OAB nhỏ nhất
trong mặt phẳng xOy cho 3 điểm A(-1:2) B(4;-2) C(-3;-1)
tìm tọa độ của điểm M để tâm giác BCM vuông cân tại M
\(\left\{{}\begin{matrix}\overrightarrow{MB}.\overrightarrow{MC}=0\\MB=MC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[\left(x_B-x\right)\overrightarrow{i}+\left(y_B-y\right)\overrightarrow{j}\right]\left[\left(x_c-x\right)\overrightarrow{i}+\left(y_C-y\right)\overrightarrow{j}\right]=0\\\sqrt{\left(x_B-x\right)^2+\left(y_B-y\right)^2}=\sqrt{\left(x_C-x\right)^2+\left(y_C-y\right)^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-x\right)\left(-3-x\right)+\left(-2-y\right)\left(-1-y\right)=0\\\left(4-x\right)^2+\left(-2-y\right)^2=\left(-3-x\right)^2+\left(-1-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-x+3y-10=0\\y+5=7x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-1\right)=0\\y=7x-5\end{matrix}\right.\)
\(\Rightarrow\)M(x;y): (0;-5) ; (1;2)
trong mặt phẳng tọa độ xOy cho F(0;1/4a) và đường thẳng (d) : y=-1/4a (a khác 0) . Gọi M(x;y) là 1 điểm thuộc mặt phẳng tọa độ. H là hình chiếu của M trên đường thẳng d
Tính \(MF^2vàMH^2\)theo x;y(tọa độ của M)
Cho gốc xOy = 110 độ . Lất điểm M trong góc xOy sao cho góc xOm = 50 độ . Trên nửa mặt phẳng bờ chứa tia Oy mà không có M lấy n sao cho góc yOn = 120 độ . Chứng tỏ rằm M,O,N thẳng hàng
B tick nếu lm đc
Cho đường tròn (C) nằm trong góc xOy(đường tròn không có điểm chung với các cạnh góc xOy).
a) Hãy tìm trên (C) một điểm M sao cho tổng các khoảng cách từ M đến hai đường thẳng chứa cạnh của góc xOy là nhỏ nhất
b) Trên mặt phẳng xOy , vẽ đường tròn tâm C(3;4), R=2. Tính giá trị nhỏ nhất của tổng các khoảng cách từ M trên đường tròn (C) nói trên đến Ox và Oy
Trong không gian với hệ tọa độ Descartes Oxyz cho điểm M( a, b, c ). Gọi A, B, C theo thứ tự là điểm đối xứng của M qua mặt phẳng (yOz), (zOx), (xOy). Trọng tâm của tam giác ABC là
A. G - a + b + b 3 ; a - b + c 3 ; a + b - c 3
B. G a 3 ; b 3 ; c 3
C. G 2 a 3 ; 2 b 3 ; 2 c 3
D. G a + b + b 3 ; a + b + c 3 ; a + b + c 3
Chọn B.
Dễ thấy các điểm A, B, C có tọa độ là A(-a, b, c), B(a, -b, c), C(a, b, -c). Thế thì tọa độ trọng tâm G của tam giác ABC sẽ là G a 3 ; b 3 ; c 3
Nhanh mk tick nhé!!!!!!!!!!!!!!!!!
Cần gấp!!!!!!!!!!
Thanks vì đã giúp :)))))))))))))