Cho P(x) = x2 + 2mx + 2m2 - 3 và Q(x) = x2 + (2m+1)x + m2
Tìm m biết P(1) = Q(-1)
Cho phương trình: (x−1)(x2−2mx+m2−2m+2)=0(x−1)(x2−2mx+m2−2m+2)=0 (1)
Giá trị m nguyên nhỏ nhất để phương trình (1) có 3 nghiệm phân biệt là
Cho hai hàm số : (P) y = \(x^2\) và (d) y = 2mx + 2m +1 với m là tham số
Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1,x2 sao cho
\(\sqrt{x1+x2}\) + \(\sqrt{3+x1.x2}\) = 2m + 1
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix}
0\leq m< 1\\
\sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)
a) Cho hai đa thức \(P\left(x\right)=x^2+2mx+m^2\)và \(Q\left(x\right)=x^2-\left(2m+1\right)x+m^2\)
Tìm m biết P(3)=Q(-2)
b) Cho hai đa thức \(P\left(x\right)=x^2+2mx+m^2\)và \(Q\left(x\right)=x^2+\left(2m+1\right)x+m^2\)
Tìm m biết P(1)=Q(-1)
CHo phương trình
\(^{x^2-2mx+2m-1=0}\)
TÌm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn \(|x1-x2|=16\)
Ta có \(\Delta'=\left(-m\right)^2-1\left(2m-1\right)\)
= \(m^2-2m+1=\left(m-1\right)^2\)
Phương trình có 2 nghiệm phân biệt x1,x2\(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)
Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}}\)
Ta có \(\left|x_1-x_2\right|=16\Leftrightarrow\left(x_1-x_2\right)^2=256\)\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=256\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=256\)
ĐẾN ĐÂY THÌ BẠN THAY VÀO RỒI TỰ LÀM TIẾP NHÉ. HỌC TỐT
(1) \(x^2-2mx+2m-4=0\)
tìm m để pt có 2 nghiệm phân biệt x1 và x2 mà
a) x1 và x2 trái dấu
b) x1 và x2 cùng dương
c) x1 và x2 cùng âm
(2) \(x^2-2mx+m^2-4=0\)
tìm m để pt có 2 nghiệm x1 và x2 mà
a) x2=2x1 , b) 3x1+2x2=7
(3) \(x^2-mx+m-6=0\)
tìm m để pt có 2 nghiệm x1 và x2 mà
a)\(|x1-x2|=\sqrt{20}\)
b) \(|x1|+|x2|=6\)
1) a) Phương trình có x1 và x2 trái dấu
\(\Leftrightarrow2m-4< 0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
b) Phương trình có x1 và x2 cùng dương
\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4=0\\2m>0\\2m-4>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\left(BĐTđúng\right)\\m>0\\m>2\end{cases}\Leftrightarrow}m>2}\)
c) Phương trình có x1 và x2 cùng âm
\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4>0\\2m< 0\\2m-4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\\m< 0\\m>2\end{cases}\Leftrightarrow0>m>2}\)
P/s: không chắc -.-
châu =)) copy câu a) rồi cho 4 tiếng con chừa làm dc câu (2) kém quá
(2) \(\left(x-m\right)^2=4\)
\(\Leftrightarrow x=\hept{\begin{cases}x1=2+m\\x2=m-2\end{cases}}\)
A) \(x_2=2x_1\Leftrightarrow\left(2+m\right)=2\left(m-2\right)\Leftrightarrow m=6\)
B) \(3x_1+2x_2=7\Leftrightarrow x_1+2\left(x_1+x_2\right)=7\)
\(x_1+x_2=2m\) \(\Leftrightarrow x_1+4m=7\Leftrightarrow5m=5\Leftrightarrow m=1\)
(3) 20 phút sau làm
Cho hàm số (P): y=x2-2mx-5+m và đường thẳng d: y=-2x-m. Tìm m để (P) cắt d tại 2 điểm phân biệt có hoành độ x1,x2 thoã mãn (\(x1^2-2mx1+2m-1\)) \(\left(x2^2-2mx^2+2m-1\right)\)<0
Vs gtri nào của m thì: PT x2 \(-\) 2mx + 2m2 \(-\) m \(-\) 6 = 0 có một nghiệm x = 1
PT nhận \(x=1\) là nghiệm
Thay \(x=1\) vào trong PT ta tìm được m:
\(x^2-2mx+2m^2-m-6=0\)
\(\Rightarrow1^2-2\cdot m\cdot1+2m^2-m-6=0\)
\(\Leftrightarrow1-2m+2m^2-m-6=0\)
\(\Leftrightarrow2m^2-3m-5=0\)
\(\Leftrightarrow2m^2+2m-5m-5=0\)
\(\Leftrightarrow2m\left(m+1\right)-5\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(2m-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\2m-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{5}{2}\end{matrix}\right.\)
Vậy PT nhận \(x=1\) là nghiệm khi \(m=-1\) hoặc \(m=\dfrac{5}{2}\)
Thay \(x=1\) vào pt \(x^2-2mx+2m^2-m-6=0\)
\(\Rightarrow1^2-2m.1+2m^2-m-6=0\)
\(\Rightarrow-3m+2m^2-5=0\)
\(\Rightarrow2m^2-3m-5=0\)
\(\Delta=b^2-4ac=\left(-3\right)^2-4.2.\left(-5\right)=49>0\)
\(\Rightarrow\) Pt có 2 nghiệm \(m_1,m_2\)
\(\left\{{}\begin{matrix}m_1=\dfrac{3+\sqrt{49}}{2.2}=\dfrac{5}{2}\\m_2=\dfrac{3-\sqrt{49}}{2.2}=-1\end{matrix}\right.\)
Vậy \(m=\dfrac{5}{2},m=-1\) thì pt có 1 nghiệm \(x=1\)
Cho P(x) = x^2 +2mx + m^2 và Q(x)=x^2 + (2m+1)x +m^2. Tìm m biết P(1)= Q(-1)
Cho 2 đa thức P(x)=x^2+2mx+m^2 và Q(x)=x^2 +(2m+1)x +m^2.Tìm m biết P(1)=Q(-1)