Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a 2 , A D = a , SA vuông góc với đáy và SA=a. Tính góc giữa SC và (SAB).
A. 900
B. 600
C. 450
D. 300
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. AB=a, BC=2a cạnh bên SA vuông góc với đáy và SA=a 2 Tính thể tích khối chóp S.ABCD
A. 2 3 a 3 3
B. 2 2 a 3 3
C. 2 2 a 3
D. 2 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a 2 , AD = a, SA vuông góc với đáy và SA = a. Tính góc giữa SC và (SAB).
A. 900
B. 600
C. 450
D. 300
Chọn đáp án D
Ta có:
=> SB là hình chiếu vuông góc của SC lên (SAB)
Tam giác SAB vuông tại A:
Tam giác SBC vuông tại B:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với mặt đáy (ABCD), AB = a, AD = 2a, SA =a. Tính thể tích khối chóp S.ABCD.
A. 2a3
B. a3
C. a3/3
D. 2a3/3
Đáp án D
Diện tích hình chữ nhật ABCD là S = 2a2, chiều cao SA =a.
Vậy thể tích khối chóp S.ABCD là V = 1 3 . 2 a 2 . a = 2 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a,AD=2a Biết SA vuông góc với mặt phẳng đáy và SA=3a . Thể tích hình chóp S.ABCD là:
A. 6 a 3
B. 2 a 2
C. 2 a 3
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Biết SA vuông góc với mặt phẳng đáy và SA = 3a. Thể tích hình chóp S.ABCD là:
A. 6 a 3
B. 12 a 3
C. 2 a 3
D. 1 3 a 3
1.Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB= \(\dfrac{a\sqrt{3}}{3}\), AD=a\(\sqrt{3}\), SA=a và vuông góc với mp đáy. Khi đó góc giữa SB và mp (SAD) bằng bao nhiêu?
2.Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. SA vuông góc với mp đáy. Số mặt của tứ diện là tam giác vuông là bao nhiêu?
3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, CA=a, CB=b, SA=h vuông góc với mặt đáy. Gọi I là trung điểm của AB.
a, CMR: BC vuông góc với (SAC)
b, Tính khoảng cách giữa SI và AC theo a,b,h
3.
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)
b.
Gọi M là trung điểm BC \(\Rightarrow IM||AC\)
\(\Rightarrow AC||\left(SIM\right)\Rightarrow d\left(AC;SI\right)=d\left(AC;\left(SIM\right)\right)=d\left(A;\left(SIM\right)\right)\)
Qua A kẻ đường thẳng song song BC cắt IM kéo dài tại K
\(\Rightarrow IM\perp AK\Rightarrow IM\perp\left(SAK\right)\)
Trong mp (SAK), kẻ AH vuông góc SK
\(\Rightarrow AH\perp\left(SIM\right)\Rightarrow AH=d\left(A;\left(SIM\right)\right)\)
\(AK=CM=\dfrac{b}{2}\)
\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AH=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=\dfrac{\dfrac{h.b}{2}}{\sqrt{h^2+\dfrac{b^2}{4}}}=\dfrac{bh}{\sqrt{b^2+4h^2}}\)
1.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (SAD)
\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)
2.
\(SA\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAC vuông
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)
\(\Rightarrow\) Tam giác SBC vuông
Vậy tứ diện có 4 mặt đều là tam giác vuông (ABC hiển nhiên vuông theo giả thiết)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = 2 a , B C = a , S A = a 3 và SA vuông góc với mặt đáy (ABCD). Thể tích V của khối chóp S.ABCD bằng
A. V = 2 a 3 3 .
B. V = 2 a 3 3 3 .
C. V = a 3 3 .
D. V = a 3 3 3 .
Đáp án B
Do S A ⊥ A B C D
⇒ V S A B C D = 1 3 S A . d t A B C D = 1 3 S A . A B . B C = 1 3 a 3 .2 a . a = 2 a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật A B = 2 a ; B C = a ; S A = a 3 và SA vuông góc với mặt đáy A B C D . Thể tích V của khối chóp S.ABCD bằng
A. V = 2 a 3 3
B. V = 2 a 3 3 3
C. V = a 3 3
D. V = a 3 3 3
Đáp án B
Thể tích khối chóp là
V = 1 3 S A . S A B C D = 1 3 . a . 3 .2 a . a = 2 a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a; AD = 3a. Cạnh bên SA vuông góc với đáy ABCD và SA = a. Tính thể tích V của khối chóp S.ABCD.
A. V=6a3
B. V=a3
C. V=3a3
D. V=2a3.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với mặt đáy (ABCD), AB = a, AD = 2. Góc giữa cạnh bên SB và mặt phẳng (ABCD) bằng 45°. Thể tích hình chóp S.ABCD bằng
A. 6 a 3 18
B. 2 2 a 3 3
C. a 3 3
D. 2 a 3 3