Chọn đáp án D
Ta có:
=> SB là hình chiếu vuông góc của SC lên (SAB)
Tam giác SAB vuông tại A:
Tam giác SBC vuông tại B:
Chọn đáp án D
Ta có:
=> SB là hình chiếu vuông góc của SC lên (SAB)
Tam giác SAB vuông tại A:
Tam giác SBC vuông tại B:
Cho hình chóp S.ABCD đáy là hình chữ nhật. AB= căn 2, AD =a, SA vuông góc vs đáy và SA=a . GÓC giữa đường thẳng SC và mặt phẳng (SAB) bằng?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Cạnh SA vuông góc với đáy AB=a, AD=a 2 , SA=a 3 . Số đo của góc giữa SC và mặt phẳng (ABCD) bằng
A. 300
B. 450
C. 600
D. 750
Cho hình chóp S.ABCD, đáy là hình chữ nhật, S A ⊥ A B C D . Biết AB=a AD=2a, góc giữa SC và (SAB) là 60 ° . Khi đó d(B;(SDC)) là
A. 2 a 15 .
B. 2 a 7 .
C. 2 a 11 11 .
D. 22 a 15 .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy và AB = a, AD=b, SA = c. Lấy các điểm B’, D’ theo thứ tự thuộc SB, SD sao cho AB’ vuông góc với SB, AD’ vuông góc với SD. Mặt phẳng (AB’D’) cắt SC tại C’. Tính thể tích khối chóp S.AB’C’D’.
Cho khối chóp S.ABCD có đáy là hình chữ nhật AB=a, BC=2a, SA vuông góc với đáy và SC tạo với mặt phẳng (SAB) một góc bằng 60 0 . Tính thể tích V của khối chóp đã cho
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = a 3 . Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc 30 độ. Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 2 6 a 3 3
B. V = 2 a 3 3
C. V = 3 a 3
D. V = 3 a 3 3
Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB = a, AD = a 2 , SA⊥(ABCD) góc giữa SC và đáy bằng 60°. Thể tích hình chóp S.ABCD bằng:
A. a 3 2
B. 3 a 3 2
C. 3 a 3
D. a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=1, AD=2 cạnh bên SA vuông góc với đáy và S A = 5 . α là số đo góc giữa hai mặt phẳng (SAB) và (SBD), cos α = ?
Hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB = a, AD = a 2 ; SA ⊥ (ABCD), góc giữa SC và đáy bằng 60°. Thể tích hình chóp S.ABCD bằng:
A. a 3 2
B. 3 a 3
C. a 3 6
D. 3 a 3 2