Biết a, b là các số thực thỏa mãn ∫ 2 x + 1 d x = a ( 2 x + 1 ) b + C . Tính P = ab.
A. P = − 1 2
B. P = 3 2
C. P = 1 2
D. P = − 3 2
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
vì |x − 1| + |x + 2| = x − 3 suy ra x-3>=0 suy ra x>=3 suy ra x-1>0,x+2>0 suy ra |x − 1| + |x + 2| = x-1+x+2
|x − 1| + |x + 2| = x − 3
x-1+x+2=x-3
x=-3-2+1
x=-4/loại
vậy ko tìm đc x
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1: |x − 1| + |x + 2| = x − 3 (*)
Xét x < - 2 thì phương trình (*) có dạng:
(1 - x) + ( - x - 2 ) = x - 3
<=> - 2x - 1 = x - 3
<=> 3x = 2 <=> \(x = {{2} \over 3}\)( Loại)
Xét - 2 ≤ x ≤ 1 thì phương trình (*) có dạng:
(1 - x ) + ( x + 2 ) = x - 3
<=> x - 3 = 3
<=> x = 6 ( Loại )
Xét x > 1 phương trình (*) có dạng:
x - 1 + x + 2 = x - 3
<=> 2x + 1 = x - 3
<=> x = - 4 ( Loại)
Vậy phương trình vô nghiệm
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d.
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.