Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
tran vinh
27 tháng 8 2021 lúc 13:44

vì |x − 1| + |x + 2| = x − 3 suy ra x-3>=0 suy ra x>=3 suy ra x-1>0,x+2>0 suy ra |x − 1| + |x + 2| = x-1+x+2

|x − 1| + |x + 2| = x − 3

x-1+x+2=x-3

x=-3-2+1

x=-4/loại

vậy ko tìm đc x

Khách vãng lai đã xóa
Chi Khánh
Xem chi tiết
Ngoc Ánh
27 tháng 8 2021 lúc 14:08

Bài 1: |x − 1| + |x + 2| = x − 3 (*)

Xét x < - 2 thì phương trình (*) có dạng:

(1 - x) + ( - x - 2 ) = x - 3

<=> - 2x - 1 = x - 3

<=> 3x = 2 <=> \(x = {{2} \over 3}\)( Loại)

Xét - 2 ≤ x ≤ 1 thì phương trình (*) có dạng:

(1 - x ) + ( x + 2 ) = x - 3

<=> x - 3 = 3

<=> x = 6 ( Loại )

Xét x > 1 phương trình (*) có dạng:

x - 1 + x + 2 = x - 3

<=> 2x + 1 = x - 3

<=> x = - 4 ( Loại)

Vậy phương trình vô nghiệm

Khách vãng lai đã xóa
Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Vũ Bảo Ngọc
Xem chi tiết
Tạ Uyên
Xem chi tiết
Tạ Uyên
13 tháng 2 2022 lúc 10:19

giúp mình bài này với ah.

Chi Khánh
Xem chi tiết