Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
deptraiphaithe
Xem chi tiết
Edowa Conan
8 tháng 8 2016 lúc 17:26

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{3}.\frac{98}{99}\)

\(=\frac{98}{297}\)

Chuc bn học tốtbanh

Lê Nguyên Hạo
8 tháng 8 2016 lúc 17:26

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

Isolde Moria
8 tháng 8 2016 lúc 17:26

Đặt tổng là M

Ta có

\(M=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

Thanh Tùng DZ
Xem chi tiết
Sky
25 tháng 2 2017 lúc 16:15

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)

\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)

\(\frac{1}{x}=\frac{50}{101}\)

\(x=1:\frac{50}{101}\)

\(x=\frac{101}{50}\)

Vậy \(x=\frac{101}{50}\)

Xem chi tiết
Kiệt Nguyễn
24 tháng 2 2019 lúc 15:23

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\Leftrightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(\Leftrightarrow2A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}\)

\(\Leftrightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(\Leftrightarrow2A=1-\frac{1}{99}\)

\(\Leftrightarrow2A=\frac{99}{99}-\frac{1}{99}\)

\(\Leftrightarrow2A=\frac{98}{99}\)

\(\Leftrightarrow A=\frac{98}{99}\div2\)

\(\Leftrightarrow A=\frac{49}{99}\)

Nguyễn Việt Hoàng
24 tháng 2 2019 lúc 15:23

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97+99}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)

\(A=\left(1-\frac{1}{99}\right)+\left(-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}\right)\)

\(A=\frac{98}{99}+0\)

\(A=\frac{98}{99}\)

Seulgi
24 tháng 2 2019 lúc 15:23

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\frac{98}{99}\)

\(A=\frac{98}{198}=\frac{49}{99}\)

mashimaro
Xem chi tiết
nguyen thanh thao
Xem chi tiết
bảo nam trần
23 tháng 2 2017 lúc 15:50

\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

Quang Duy
23 tháng 2 2017 lúc 15:53

S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)

S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)

S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)

S=\(\frac{1}{2}.\frac{98}{99}\)

S=\(\frac{49}{99}\)

Trương Hồng Hạnh
23 tháng 2 2017 lúc 15:58

S = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

= \(\frac{1}{2}\) . (\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\))

= \(\frac{1}{2}\). (\(1-\frac{1}{99}\))

= \(\frac{1}{2}\). \(\frac{98}{99}\) = \(\frac{49}{99}\)

BL
Xem chi tiết
Đoàn Duy Nhật
30 tháng 1 2022 lúc 10:59

=49/99 NHA

HT

k cho mình nha

@@@@@@@@@@@@@@@@@@

Khách vãng lai đã xóa
Xyz OLM
30 tháng 1 2022 lúc 10:27

\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

Khách vãng lai đã xóa
Cậu chủ họ Lương
30 tháng 1 2022 lúc 10:28

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)

2A=\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

2A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)

2A=\(1-\frac{1}{99}\)

A=\(\frac{49}{99}\)

Chúc bạn học tốt

HYC-30/1/2022

Khách vãng lai đã xóa
Khánh Linh Nguyễn
Xem chi tiết
Hoang Hung Quan
4 tháng 2 2017 lúc 10:39

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2.\left(1-\frac{1}{99}\right)\)

\(=2.\frac{98}{99}\)

\(=\frac{196}{99}=1\frac{97}{99}\)

bảo nam trần
4 tháng 2 2017 lúc 10:41

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

Dương Bá Gia Bảo
4 tháng 5 2019 lúc 13:18

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{1}-\frac{1}{100}\)

=>\(\frac{99}{100}\)

B=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)

=>\(\frac{1}{1}-\frac{1}{99}\)

=>\(\frac{98}{99}\)

Thảo Vi
Xem chi tiết
nhok họ hoàng
23 tháng 4 2017 lúc 21:28

A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+.........+1/97-1/99

=1-1/97=98/99

CHÕ KIA BN SAI ĐỀ MÌNH SỬA LUÔN CHO RỒI

Ngọc Bích Sesshomaru
23 tháng 4 2017 lúc 21:29

                              giải

A = \(\frac{1}{1.3}\)\(\frac{2}{3.5}\)\(\frac{2}{5.7}\)+....+\(\frac{2}{97.99}\)

     = \(\frac{1}{3}\)+ [ ( \(\frac{1}{3}\)\(\frac{1}{5}\)) +(\(\frac{1}{5}\)-\(\frac{1}{7}\)) +....+ (\(\frac{1}{97}\)-\(\frac{1}{99}\))]

     = \(\frac{1}{3}\)+ ( \(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{97}\)-\(\frac{1}{99}\))

    = \(\frac{1}{3}\)+(\(\frac{1}{3}\)-\(\frac{1}{99}\))

   = \(\frac{1}{3}\)\(\frac{32}{99}\)

    = \(\frac{1}{99}\)

Vậy A = \(\frac{1}{99}\)

                       GIẢI THIK CÁCH LÀM 

HAI SỐ TẠO NÊN TÍCH Ở MẪU CÓ SỐ T1 KÉMSỐ T2 BẰNG 1 SỐ Ở TỬ THÌ PHÂN SỐ ĐÓ SẼ BẰNG HIỆU CỦA  2 PHÂN SỐ CÓ TỬ LAF1 , MẪU LÀ SỐ T1 TRỪ ĐI PHÂN SỐ CÓ TỬ LÀ 1 , MẪU LÀ SỐ T2 

*chú ý rằng chỉ áp dụng cho phân số có mẫu có thừa số t1 kém thừa số t2 bằng tử thôi nha!

mik sẽ lấy vd cho bạn xem 

  \(\frac{3}{5.8}\)=\(\frac{1}{5}\)-\(\frac{1}{8}\)

chúc bạn học giỏi

nhok họ hoàng
23 tháng 4 2017 lúc 21:33

MÌNH SẼ GIẢI THÍCH NHƯ SAU 

khi \(\frac{1}{3x5}\)=1/15

thì ta có cách khác :

ta thấy 3 và 5 có khoảng cách là 2 thì ta đặt khoảng cách ấy dưới 1 là 1/2

và ta sẽ tách là 1/3-1/5

=>ta có :1/2(1/3-1/5)=1/2(5/15-3/15)=1/2x2/15=1/15

Vương Hoàng Thảo Ngân
Xem chi tiết
Phùng Minh Quân
25 tháng 4 2018 lúc 19:39

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

Nguyễn Thanh Hiền
25 tháng 4 2018 lúc 19:52

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

Myy_Yukru
25 tháng 4 2018 lúc 19:52

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{21}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{51}{51}-\frac{1}{51}\)

\(A=\frac{50}{51}\)

\(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(A=\frac{21}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{30.101}+\frac{33.101}{42.101}\right)\)

\(A=\frac{21}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(A=\frac{21}{4}.33.\frac{4}{21}\)

\(A=33\)

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\frac{98}{99}\)

\(A=\frac{49}{99}\)