\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)
S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\frac{98}{99}\)
S=\(\frac{49}{99}\)
S = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
= \(\frac{1}{2}\) . (\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\))
= \(\frac{1}{2}\). (\(1-\frac{1}{99}\))
= \(\frac{1}{2}\). \(\frac{98}{99}\) = \(\frac{49}{99}\)
2S=\(\dfrac{2}{1\cdot3}\)+\(\dfrac{2}{3\cdot5}\)+\(\dfrac{2}{5.7}\)+......+\(\dfrac{2}{97\cdot99}\)
2S=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{97}-\dfrac{1}{99}\)
2S=\(1-\dfrac{1}{99}\)
2S=\(\dfrac{98}{99}\)
S=\(\dfrac{98}{99}:2\)
S=\(\dfrac{49}{99}\)