Tìm tất cả các giá trị của m để phương trình m x 2017 x 2018 − 1 + x − 2 = 0 có nghiệm.
A. m ∈ ℝ
B. m ∈ ℝ \ { 0 }
C. m ∈ − 1 ; 1
D. m ∈ 0 ; 1
Cho phương trình x² - (2m + 2)x + 2m = 0 (1), với m là tham số. Tìm tất cả các giá trị của m để phương trình (1) nhận 4 + √2017 là một nghiệm.
THAY X=4+\(\sqrt{2017}\)VÀO PHƯƠNG TRÌNH=>PT CÓ DẠNG ;GÌ ĐÓ GÌ ĐÓ VIẾT RA NHEN<lười chảy nước>
cho pt cộng với chất xúc tác cho ló pư nhanh(hehe)....=\(2025+6\sqrt{2017}-6m-2m\sqrt{2017}=0\)
=>\(0m^2-\left(6+2\sqrt{2017}\right)m+2025+6\sqrt{2017}=0\)rùi tự giải đenta nha, mệt mỏi qué rùi tui coằn ik ngủ mai kiểm tra, nếu rảnh mai tui qua cho kết quả nha sỏ ry nhìu
chắc qua bùn ngủ qué ko giải đenta nha^,^
m=\(\frac{2025+6\sqrt{2017}}{6+2\sqrt{2017}}\)
Tìm tất cả các giá trị thực của tham số m để phương trình 5 x 2 + 12 x + 16 = m ( x + 2 ) x 2 + 2 có hai nghiệm thực phân biệt thỏa mãn điều kiện 2017 2 x + x + 1 - 2017 2 x - x + 1 + 2018 x ≤ 2018
A. m ∈ ( 2 6 ; 3 3 ]
B. m ∈ [ 2 6 ; 3 3 ]
C. m ∈ ( 3 3 ; 11 3 3 ) ∪ { 2 6 }
D. m ∈ ( 2 6 ; 11 3 3 )
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m - 2018 = 0 có duy nhất một nghiệm.
A. m ≤ 2015, m ≥ 2019.
B. 2015 < m < 2019.
C. m = 2015, m = 2019.
D. m < 2015, m > 2019.
Chọn D
Phương pháp:
Biến đổi phương trình về f(x) = 2018 - m và sử dụng tương giao đồ thị: Phương trình có duy nhất một nghiệm khi và chỉ khi đường thẳng y = 2018 - m cắt đồ thị hàm số y = f(x) tại duy nhất một điểm.
Cách giải:
Phương trình f(x) + m - 2018 = 0
Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 - m (có phương song song hoặc trùng với trục hoành).
Dựa vào đồ thị, ta có ycbt
Cho hàm số y=f(x) xác định trên R và có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)+m-2018=0 có duy nhất một nghiệm.
A. m ≤ 2015 , m ≥ 2019 .
B.2015<m<2019
C.m=2015,m=2019
D.m<2015,m>2019
Tìm tất cả các giá trị thực của tham số m để phương trình |f(2017x - 2018) - 2| = m có đúng 3 nghiệm
Cho phương trình log 2 x = m với x > 0. Tìm tất cả các giá trị thực của tham số m để phương trình có nghiệm thực.
A. m ≥ 0
B. m ∈ ℝ
C. m > 0
D. m ∈ ℤ
Đáp án là B
Tập giá trị của hàm số log a x = R
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-1=0\). Tìm tất cả các giá trị của m để phương trình có nghiệm
phương trình có nghiệm khi:
\(\Delta\)\(\ge\)0<=>[-(2m+1)]^2-4.(m^2-1)\(\ge\)0
<=>(2m+2)^2-4m^2+4\(\ge\)0
<=>4m^2+8m+4-4m^2+4\(\ge\)0
<=>8m+8\(\ge\)0
<=>8(m+1)\(\ge\)0
<=>m\(\ge\)-1
vậy m\(\ge\)-1 thì phương trình có nghiệm
△≥0⇔(2m+2)^2-4(m^2-1)≥0
⇔4m^2+8m+4-4m^2+4≥0
⇔8m+8≥0
⇔m≥-1
Vậy phương trình có nghiệm khi m≥-1
Tìm tất cả các giá trị của tham số m để bất phương trình m( x - 1 ) < 3 - x có nghiệm?
A. m ≠ 1
B. m = 1
C. m ∈ R
D. m ≠ 3
Ta có: m(x - 1) < 3 – x
Bất phương trình tương đương là ( m + 1 )x < m + 3
Rõ ràng với m ≠ - 1 thì bất phương trình luôn có nghiệm
Với m = - 1 ta có bất phương trình có dạng: 0x < 2 luôn đúng với mọi x
Vậy bất phương trình có nghiệm với mọi m.
Chọn đáp án C.
3: cho hàm số f(x)=ax^2+bx+c có tọa độ đỉnh (2;-1) và có giá trị nhỏ nhất khi là -1 khi x=2
Tìm tất cả các giá trị thực của tham số m để phương trình |f(2017x-2018)-2|=m có đúng 3 nghiệm.
Tìm tất cả các giá trị của tham số m để bất phương trình (m-1)x^2-(m-1)x+5 ≥ 0, ∀x ∈ R
Để bất phương trình luôn có nghiệm thì
\(\left\{{}\begin{matrix}\left(m-1\right)^2-4\cdot1\cdot5< 0\\1>=0\end{matrix}\right.\Leftrightarrow\left(m-1\right)^2< 20\)
\(\Leftrightarrow-2\sqrt{5}+1< x< 2\sqrt{5}+1\)