Đường thẳng nối hai điểm cực trị của đồ thị hàm số y = x 3 − 3 x + m đi qua điểm M(1;1) khi m = m 0 . Hỏi giá trị m 0 gần giá trị nào nhất trong các giá trị sau?
A. 1
B. 4
C. -2
D. 0
Điểm M ( 3 ; - 1 ) thuộc đường thẳng đi qua hai điểm cực đại và cực tiểu của đồ thị hàm số y = x 3 - x + m khi m bằng
A. 2
B. 1
C. -1
D. 0
Đáp án là B.
• Ta có y , = 3 x 2 - 1 ; Thực hiện phép chia y cho y , ta được: y = 1 3 x ( 3 x 2 - 1 ) - 2 3 x + m
Suy ra phương trình đường thẳng đi qua 2 điểm cực đại,cực tiểu là y = - 2 3 x + m
• Thay M(3;-1) M ( 3 ; - 1 ) ⇒ - 1 = - 2 3 3 + m ⇒ - 1 = - 2 + m ⇒ m = 1
Tìm tổng tất cả các giá trị thực của tham số m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = 2 x 3 + 3 ( m - 1 ) x 2 + 6 m ( 1 - 2 m ) x song song đường thẳng y= -4x.
Tìm tham số m là số thực để có đường thằng d:
y = (2m – 1)x + 3 + m vuông vóc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x³- 3x² + 1
A. m = 3/2 B. m = 3/4
C. m = -1/2 D. m = 1/4
TXĐ: D = R
\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)
Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)
Ptđt đi qua 2 điểm cực trị:
\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)
Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)
Chọn B
Đường thẳng nối hai điểm cực đại và cực tiểu của đồ thị hàm số y = x 3 − 3 x + m đi qua điểm M(2;-1) khi m bằng
A. 2
B. -2
C. -3
D. 3
Tìm tổng tất cả các giá trị thực của tham số
m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
\(y=2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x.\) song song đường thẳng y= -4x
.
Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:
giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2
Ta đi tìm số dư 1 cách tổng quát:
Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\)
Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3
từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\)
Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này )
áp dụng vào bài toán ta có:
\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)
Gán: \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i
\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke
Tìm tất cả các giá trị thực của tham số \(m\) để khoảng cách từ điểm \(M\left(0;3\right)\) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=x^3+3mx+1\) bằng \(\dfrac{2}{\sqrt{5}}\)
Ta có : \(y'=3x^2+3m\)
Điều kiện để hàm số có 2 điểm cực trị là y'=0 có 2 nghiệm phân biệt
\(\Leftrightarrow 3x^2=-3m\) có 2 nghiệm phân biệt
\(\Leftrightarrow m<0\)
Đường thẳng đi qua 2 điểm cực trị là phần dư khi lấy y chia cho y':
\(x^3+3mx+1=\dfrac{x}{3}.(3x^2+3m)+2mx+1\)
\(=>\) đường thẳng đi qua 2 điểm cực trị có dạng: \(y=2mx+1\)
\(\Leftrightarrow 2mx-y+1=0\) \((\Delta)\)
\(d_{(M,\Delta)}=\dfrac{|0.2m+3.(-1)+1|}{\sqrt{4m^2+1}}=\dfrac{2}{\sqrt{5}}\)
\(\Leftrightarrow 4m^2+1=5 \Leftrightarrow m^2=1 \Leftrightarrow m=\pm1\)
Đối chiếu với điều kiện ta được \(m=1\)
Đường thẳng nối hai điểm cực trị của đồ thị hàm số y = x 3 − 3 x + m đi qua điểm M(1;1) khi m = m 0 . Hỏi giá trị m 0 gần giá trị nào nhất trong các giá trị sau?
A. 1.
B. 4.
C. -2.
D. 0.
Mọi người giúp mình với ạ!!! Mình cảm ơn rất nhiều!!!
1, Viết phương trình đường thẳng đi qua các điểm cực trị của đồ thị hàm số:
\(y=x^3-6x^2-3x+2\)
2, Cho hàm số: \(y=x^3-x^2+mx\)
Tìm m để đồ thị hàm số có các điểm cực đại, cực tiểu: A, B sao cho Δ OAB vuông góc tại O.
cho hàm số \(y=\dfrac{mx^2+\left(m+2\right)x+5}{x^2+1}\). gọi S là tập hợp các giá trị của m sao cho đồ thị hàm số đã cho có đúng hai điểm cực trị và đường thẳng nối hai điểm cực trị của đồ thị hàm số cắt hai trục tọa độ tạo thành một tam giác có diện tích = \(\dfrac{25}{4}\). tính tổng các phần tử của S