Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình log 2 x - 1 = log 2 m x - 8 có hai nghiệm phân biệt?
A. 3
B. vô số
C. 4
D. 5
Có tất cả bao nhiêu giá trị nguyên không dương của tham số m để phương trình 2 x + m = x − 1 có nghiệm duy nhất?
A. 4
B. 3
C. 1
D. 2
⇔ x − 1 ≥ 0 2 x + m = x − 1 2 ⇔ x ≥ 1 x 2 − 4 x + 1 − m = 0 ( * )
Phương trình có nghiệm duy nhất khi hệ có nghiệm duy nhất.
TH1: ∆ ' = 0 ⇔ m = - 3 thì (*) có nghiệm kép x = 2 ≥ 1 (thỏa).
TH2: ∆ ' > 0 ⇔ m > - 3 thì phương trình có nghiệm duy nhất khi (*) có 2 nghiệm thỏa mãn:
x 1 < 1 < x 2 ⇔ x 1 - 1 x 2 - 1 < 0 ⇔ x 1 x 2 - x 1 + x 2 + < 0
⇔ 1 - m - 4 + < 0 ⇔ m > - 2
Do m không dương nên m ∈ {−1; 0}
Kết hợp với trường hợp m = −3 ở trên ta được 3 giá trị của m thỏa mãn bài toán.
Đáp án cần chọn là: B
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Tất cả các giá trị của tham số m để phương trình log m x = 2 log x + 1 có nghiệm là
1.Cho phương trình x2 +4x-m=0(1).Tìm tất cả các giá trị của tham số m để phương trinh (1) có đúng 1 nghiệm thuộc khoảng (-3,1)
2.Có bao nhiêu giá trị m nguyên trong nửa khoảng (0;2019] để phương trình |x2 -4|x|-5|-m có hai nghiệm phân biệt
Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm
Câu 1: Gọi M là tập hợp tất cả các giá trị nguyên của tham số m để phương trình \(-x^2+\left(2m-3\right)x-m^2+m+20=0\) có hai nhgieemj trái dấu. Tổng tất cả các phần tử của M bằng
A. 5 B. 4 C. 10 D. 15
Câu 2: Có tất cả bao nhiêu giá trị nguyên của tham số m nhỏ hơn 2022 để bất phương trình \(x^2-8x+m+20\ge0\) nghiệm đúng với mọi x ϵ [5; 10]?
A. 2027 B. 2028 C. 2062 D. 2063
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình -x2-4x = m+3 có hai nghiệm âm phân biệt?
ta có phương trình như sau :
\(x^2+4x+m+3=0\text{ có hai nghiệm âm phân biệt}\Leftrightarrow\)\(\hept{\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-m-3>0\\-4< 0\\m+3>0\end{cases}}\Leftrightarrow1>m>-3\)
vậy có 3 giá trị nguyên của m là 0,-1, -2
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-3; 3] để phương trình ( m 2 + 2 ) c o s 2 x - 2 m sin 2 x + 1 = 0 có nghiệm
A. 3
B. 7
C. 6
D. 4
Có tất cả bao nhiêu giá trị nguyên của tham số m (biết m ≥ - 2019 ) để hệ phương trình sau có nghiệm thực?
x 2 + x - y 3 = 1 - 2 m 2 x 3 - x 2 y 3 - 2 x 2 + x y 3 = m
A. 2021
B. 2019
C. 2020
D. 2018