Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
Tìm tất cả các giá trị thực của tham số m để y = l o g ( x 2 - 4 x - m + 1 ) có tập xác định là R
Tìm tất cả các giá trị thực của tham số m để hàm số y= log( x2- 2x- m+ 1) có tập xác định là R
A. m≥ 0.
B. m<0
C. m ≤ 2.
D. m> 2.
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 4 x - m + 1 ) có tập xác định là R
A. m > -4
B. m < 0
C. m < -4
D. m < -3
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 4 x - m + 1 ) có tập xác định là ℝ .
A. m > -4
B. m < 0
C. m < -4
D. m < -3
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 2 x - m + 1 ) có tập xác định là R:
A. m ≥ 0
B. m < 0
C. m ≤ 2
D. m > 2
có bao nhiêu giá trị nguyên của m để phương trình \(\left(x-1\right)\log\left(e^{-x}+m\right)=x-2\) có 2 nghiệm thực phân biêt
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 2 m x + 4 ) có tập xác định là ℝ .
A . - 2 ≤ m ≤ 2
B . m = 2
C . m > 2 h o ặ c m < - 2
D . - 2 < m < 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 2 m x + 4 ) có tập xác định là R
A. - 2 ≤ m ≤ 2
B. m = 2
D. -2 < m < 2