Cho ∫ 1 2 f ( x ) d x = 1 và ∫ 1 4 f ( t ) d t = - 3 . Giá trị của ∫ 2 4 f ( u ) d u là:
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho hàm số f ( x ) = a x + b c x + d với a,b,c,d là các số thực và c ≠ 0. Biết f(1)=1, f(2)=2 và f(f(x))=x với mọi x ≠ - d c . Tính l i m x → ∞ f ( x ) .
A. 3 2
B. 5 6
C. 2 3
D. 6 5
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
57. Cho hs f(x) = ax +b / cx +d ( a,b,c,d thuộc R , c#0) . Biết f(1)=1 , f(2)=2 và f(f(x))=x với mọi x # -d/c. Tìm tiệm cận ngang của đồ thị hs y = f(x)
\(f\left(0\right)=\dfrac{b}{d}\Rightarrow f\left(f\left(0\right)\right)=0\Rightarrow f\left(\dfrac{b}{d}\right)=0\)
\(\Rightarrow\dfrac{\dfrac{ab}{d}+b}{\dfrac{cb}{d}+d}=0\Rightarrow b\left(a+d\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\d=-a\end{matrix}\right.\)
TH1: \(b=0\)
\(f\left(1\right)=1\Rightarrow a=c+d\)
\(f\left(2\right)=2\Rightarrow2a=2\left(2c+d\right)\Rightarrow a=2c+d\)
\(\Rightarrow2c+d=c+d\Rightarrow c=0\) (ktm)
TH2: \(d=-a\)
\(f\left(1\right)=1\Rightarrow a+b=c+d=c-a\Rightarrow2a+b=c\) (1)
\(f\left(2\right)=2\Rightarrow2a+b=2\left(2c+d\right)=2\left(2c-a\right)\Rightarrow4a+b=4c\) (2)
Trừ (2) cho (1) \(\Rightarrow2a=3c\Rightarrow\dfrac{a}{c}=\dfrac{3}{2}\)
\(\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{ax+b}{cx+d}=\dfrac{a}{c}=\dfrac{3}{2}\)
Hay \(y=\dfrac{3}{2}\) là tiệm cận ngang
Cho hàm số f(x) ={\(\dfrac{-2\left(x-3\right)}{\sqrt{x^2-1}}\)\(\dfrac{-1\le x< 1}{x\ge1}\)giá trị của f(-1), f(1) lần lượt là
A. 0 và 8 B. 8 và 0 C. 0 và 0 D. 8 và 4
57. Cho hs f(x) = \(\dfrac{ax+b}{cx+d}\) ( a,b,c,d thuộc R , c#0). Biết f(1)=1 , f(2)=2 và f (f(x)) =x với mọi x # \(\dfrac{-d}{c}\). Tìm tiệm cận ngang của đồ thị hs y= f(x)
a, Cho f(x)= (1-x) . f(x-1) với x>1. Tính f(4) biết f(1)=1
b, Cho f(x) + xf(-x) = x+1 \(\forall\)x. Tính f(3)
c, Cho 2020f(x) - xf(-x) = x+2021\(\forall\)x. Tính f(2020)
D, (x+1)f(x) = (x-2)f(x+2)\(\forall\)x và f(0)=1. Tính f(2)
Mọi người giúp em với ạ . Nửa tiếng nữa em cần rồi ạ.
Cho đa thức f(x)=ax^4+bx^3+cx^2+dx+4a.a) Tìm quan hệ giữa các hệ số a và c;b và d của đa thức f(x) để f(x) có hai nghiệm là x=2 và x=-2. Thử lại với a=3;b=4;b) Với a=1;b=1.Hãy cho biết x=1 và x=-1 có phải là nghiệm đa thức vừa tìm?
Bài 1: cho đa thức f(x) thỏa mãn:
4x.f(x-3)= (x-1).f.(1-3x)
Và f(x) có 2 ngiệm. Tìm 2 ngiệm của f(x)
Bài 2: cho f(x) = x2+ax+b , b khác 1 và a+b = -1
CMR f(x) có 2 ngiệm x=1 và x=b
Bài 3: cho f(x) = x2+mx+n , m-n= -1
CMR f(x) có nghiệm x= -1 và x= -n
cho f(x) = 2(x^2-3) - ( x^2 - 3 ) - ( x^2 + 5x ) a, thu gọn f(x) . b , chứng tỏ -1 và 6 là nghiệm của f(x) . bài 2 : Tìm nghiệm của các đa thức . a, A(x) = -4x + 7 . b, B(x) = x^2 + 2x . c, C(x) = 1/2 - căn bậc hai x . d, D(x) = 2x^2 - 5
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)