Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Phạm
Xem chi tiết
Mr Lazy
27 tháng 6 2015 lúc 9:55

= 6x^2 - 2x^2 -7x^2 -4x - 1 - x + 2x^2 +1

= (6x^2 - 2x^2 - 7x^2 + 2x^2) + (-4x - x) + (-1 + 1)

= -x^2 - 5x 

__Anh
Xem chi tiết
Nguyễn Nhã Ly
25 tháng 8 2019 lúc 7:16

a. Ta có: \(3x2xy-\frac{2}{3}x^2y-4x^2.\frac{1}{3}y=6x^2y-\frac{4}{3}x^2y=\left(6-\frac{2}{3}-\frac{4}{3}\right)x^2y=4x^2y.\)

b. Thay \(x=-2,y=\frac{1}{8}\)vào đơn thức \(4x^2y\), ta được: \(4x^2y=4\left(-2\right)^2.\frac{1}{8}=2\).

Vậy, giá trị của biểu thức \(x=-2,y=\frac{1}{8}\rightarrow=2\) 

Trùm Trường
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2019 lúc 5:00

\(A=\frac{sin^2x+cos^2x+2sinx.cosx-1}{\frac{cosx}{sinx}-sinx.cosx}=\frac{2sinx^2x.cosx}{cosx-sin^2x.cosx}=\frac{2sin^2x.cosx}{cosx\left(1-sin^2x\right)}\)

\(=\frac{2sin^2x}{1-sin^2x}=\frac{2sin^2x}{cos^2x}=2tan^2x\)

\(N=\left(\frac{sinx+\frac{sinx}{cosx}}{cosx+1}\right)^2+1=\left(\frac{sinx.cosx+sinx}{cosx\left(cosx+1\right)}\right)^2+1\)

\(=\left(\frac{sinx\left(cosx+1\right)}{cosx\left(cosx+1\right)}\right)^2+1=tan^2x+1=\frac{1}{cos^2x}\)

Quyến Phạm Văn
Xem chi tiết
Trùm Trường
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2019 lúc 5:03

\(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x=\frac{1}{cos^2x}-sin^2x-cos^2x\)

\(=1+tan^2x-\left(sin^2x+cos^2x\right)=1+tan^2x-1=tan^2x\)

\(M=\frac{2cos^2x-1}{sinx+cosx}=\frac{2cos^2x-\left(sin^2x+cos^2x\right)}{sinx+cosx}=\frac{cos^2x-sin^2x}{sinx+cosx}\)

\(\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}=cosx-sinx\)

Nguyễn Tạ Khánh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 8:37

Câu 1: C

Câu 2: D

Câu 3: A

Câu 4: B

hoàng mỹ trung
Xem chi tiết
Đỗ Hoài Chinh
30 tháng 7 2018 lúc 2:07

=\(\frac{1-cos2a}{1+cos2a}\)\(\left(1+cos2a+\frac{1-cos2a}{2}-1\right)\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a}{1+cos2a}\)\(\left(cos2a+\frac{1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{2cos2a+1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{1+cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a}{2}\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a+1+cos2a}{2}\)

=\(\frac{2}{2}\)=1

Đạt Võ Thành
Xem chi tiết
Nguyen Hoang Thuc
Xem chi tiết