Đơn giản biểu thức x 1 2 + 3 y 1 2 x 1 2 - y 1 2 2 + x 1 2 - 3 y 1 2 x - y . x 1 2 - y 1 2 2 ( x , y ≥ 0 ; x ≠ y )
A. 3 y - x y - x
B. x - 3 y x - y
C. 3 y - x x - y
D. 3 y + x x - y
Bài 4: Đơn giản biểu thức 6x^2 - 2x^2 - ( 7x^2 + 4x + 1 ) - ( x - 2x^2 - 1)
= 6x^2 - 2x^2 -7x^2 -4x - 1 - x + 2x^2 +1
= (6x^2 - 2x^2 - 7x^2 + 2x^2) + (-4x - x) + (-1 + 1)
= -x^2 - 5x
Cho biểu thức 3x.2xy -2/3x^2y- 4x^2.1/3y
a) Thực hiện đơn giản biểu thức
b) Tính giá trị của biểu thức với x=-2, y=1/8
a. Ta có: \(3x2xy-\frac{2}{3}x^2y-4x^2.\frac{1}{3}y=6x^2y-\frac{4}{3}x^2y=\left(6-\frac{2}{3}-\frac{4}{3}\right)x^2y=4x^2y.\)
b. Thay \(x=-2,y=\frac{1}{8}\)vào đơn thức \(4x^2y\), ta được: \(4x^2y=4\left(-2\right)^2.\frac{1}{8}=2\).
Vậy, giá trị của biểu thức \(x=-2,y=\frac{1}{8}\rightarrow=2\)
1) Đơn giản biểu thức : \(A=\frac{\left(sinx+cosx\right)^2-1}{cotx-sinx.cosx}\)
2) Đơn giản biểu thức : \(N=\left(\frac{sinx+tanx}{cosx+1}\right)^2+1\)
\(A=\frac{sin^2x+cos^2x+2sinx.cosx-1}{\frac{cosx}{sinx}-sinx.cosx}=\frac{2sinx^2x.cosx}{cosx-sin^2x.cosx}=\frac{2sin^2x.cosx}{cosx\left(1-sin^2x\right)}\)
\(=\frac{2sin^2x}{1-sin^2x}=\frac{2sin^2x}{cos^2x}=2tan^2x\)
\(N=\left(\frac{sinx+\frac{sinx}{cosx}}{cosx+1}\right)^2+1=\left(\frac{sinx.cosx+sinx}{cosx\left(cosx+1\right)}\right)^2+1\)
\(=\left(\frac{sinx\left(cosx+1\right)}{cosx\left(cosx+1\right)}\right)^2+1=tan^2x+1=\frac{1}{cos^2x}\)
đơn giản biểu thức A=x^2-7x+10/2|x+5|
1) Đơn giản biểu thức : \(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x\)
2)Đơn giản biểu thức : \(M=\frac{2cos^2x-1}{sinx+cosx}\)
\(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x=\frac{1}{cos^2x}-sin^2x-cos^2x\)
\(=1+tan^2x-\left(sin^2x+cos^2x\right)=1+tan^2x-1=tan^2x\)
\(M=\frac{2cos^2x-1}{sinx+cosx}=\frac{2cos^2x-\left(sin^2x+cos^2x\right)}{sinx+cosx}=\frac{cos^2x-sin^2x}{sinx+cosx}\)
\(\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}=cosx-sinx\)
Câu 1:Đơn giản biểu thức:(-65)-(x+35)+101 ta được kết quả:
A. x B. x - 1 C. 1 - x D. - x
Câu 2:Giá trị của biểu thức a . b^2 với a = 3;b = - 4 bằng
A. - 24 B. 24 C. - 48 D. 48
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 1: C
Câu 2: D
Câu 3: A
Câu 4: B
Đơn giản biểu thức
tan2 x(2cos2x+sin2x-1)+cos2x
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(1+cos2a+\frac{1-cos2a}{2}-1\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(cos2a+\frac{1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{2cos2a+1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{1+cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{2}\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a+1+cos2a}{2}\)
=\(\frac{2}{2}\)=1
Đơn giản hóa biểu thức:9x+5-3x-1-x
Đơn giản biểu thức:
1, - (x + 10) + x - 20
2, (-x + y - 30) - (-x + y)
3, (-m + n - p) - (p-m)