(4x + 2)(4x – 2) bằng:
A. 4 x 2 + 4
B. 4 x 2 - 4
C. 16 x 2 + 4
D. 16 x 2 - 4
Câu 1: x2 + 2 xy + y2 bằng:
A. x2 + y2 B.(x + y)2 C. y2 – x2 D. x2 – y2
Câu 2: (4x + 2)(4x – 2) bằng:
A. 4x2 + 4 B. 4x2 – 4 C. 16x2 + 4 D. 16x2 – 4
Câu 3: 25a2 + 9b2 - 30ab bằng:
A.(5a-9b)2 B.(5a – 3b)2 C.(5a+3b)2 D.(5a)2 – (3b)2
Câu 4: 8x3 +1 bằng
A.(2x+1).(4x2-2x+1) B. (2x-1).(4x2+2x+1) C.(2x+1)3 D.(2x)3-13
Câu 5:Thực hiện phép nhân x(3x2 + 2x - 5) ta được:
A.3x3 - 2x2 – 5x B. 3x3 + 2x2 – 5x C. 3x3 - 2x2 +5x D. 3x3 + 2x2 + 5x
câu 1 B
câu 2 D
câu 3 ko bt
câu 4 x=-1/2; x = -(căn bậc hai(3)*i-1)/4;x = (căn bậc hai(3)*i+1)/4;
câu 5 x=-5/3, x=0, x=1
Câu 1: x2 + 2 xy + y2 bằng:
A. x2 + y2 B.(x + y)2 C. y2 – x2 D. x2 – y2
Câu 2: (4x + 2)(4x – 2) bằng:
A. 4x2 + 4 B. 4x2 – 4 C. 16x2 + 4 D. 16x2 – 4
Câu 3: 25a2 + 9b2 - 30ab bằng:
A.(5a-9b)2 B.(5a – 3b)2 C.(5a+3b)2 D.(5a)2 – (3b)2
Câu 4: 8x3 +1 bằng
A.(2x+1).(4x2-2x+1) B. (2x-1).(4x2+2x+1) C.(2x+1)3 D.(2x)3-13
Câu 5:Thực hiện phép nhân x(3x2 + 2x - 5) ta được:
A.3x3 - 2x2 – 5x B. 3x3 + 2x2 – 5x C. 3x3 - 2x2 +5x D. 3x3 + 2x2 + 5x
a, (x+10/4x-8) . (4-2x/x+2)
b, (1-4x^2/x^2+4x) : (2-4x/3x)
c, ( 4y^2/7x^4) : (-8y/35x^2)
d, (x^2-4/3x+12) . (x+4/2x-4)
a: \(\dfrac{x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{x+10}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-\left(x+10\right)}{2\left(x+2\right)}\)
b: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(x-2\right)}\)
\(=\dfrac{3\left(2x-1\right)\left(2x+1\right)}{2\left(x-2\right)\left(x+4\right)}\)
c: \(=\dfrac{4y^2}{7x^4}\cdot\dfrac{35x^2}{-8y}=\dfrac{5}{x^2}\cdot\dfrac{-1}{2}\cdot y=\dfrac{-5y}{2x^2}\)
d: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
`c)(2x-1)^{2}+(1-x).3x<=(x+2)^{2}`
`<=>>4x^{2}-4x+1+3x-3x^{2}<=x^{2}+4x+4`
`<=>x^{2}-x+1<=x^{2}+4x+4`
`<=>4x+x>=1-4`
`<=>5x>=-3`
`<=>x>=-3/5`
thứ nhất bn đăng sai môn
thứ hai bn giải r đăng lmj :???
Thứ nhất đang sai môn
Thứ hai không biết giải fndf]-0jhdfuhiofghjfgoihjfgopihjfgihjohjgo;hjghghgdjhldhjdfighjs;dligjlkdfgjdhfghfgh41fg6j541fg3j5h4gf6j54dgh65gf4654j
5gj5fg
35j4gh
6jfd4
5j4fj
a) √x^2-2x+4 = 2x - 2 b) √x^2-6x+9+x = 13 c) √x^2-3x +2 = √x-1 d) √x^2-4x+4 = ✓4x^2 e) 4x^2-4x+1 = √x-8x+16
a) \(\sqrt[]{x^2-2x+4}=2x-2\)
\(\Leftrightarrow\sqrt[]{x^2-2x+4}=2\left(x-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)\ge0\\x^2-2x+4=4\left(x-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\) \(\left(1\right)\)
Giải pt \(3x^2-6x=0\)
\(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=2\)
c) \(\sqrt{x^2-3x+2}=\sqrt[]{x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-3x+2=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x=1\cup x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
a: \(=\dfrac{\left|x+2\right|}{x-1}\)
b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)
c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)
phân tích đa thức thành nhân tử
a/4x-4y+x^2-2xy+y^2
b/x^4-4x^3-8x^2+8x
c/x^3+x^2-4x-4
d/x^4-x^2+2x-1
e/x^4+x^3+x^2+1
f/x^3-4x^2+4x-1
\(a/\)
\(4x-4y+x^2-2xy+y^2\)
\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+x-y\right)\)
\(b/\)
\(x^4-4x^3-8x^2+8x\)
\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)
\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)
\(=x\left(x+2\right)\left(x^2-6x-4\right)\)
\(d/\)
\(x^4-x^2+2x-1\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)
\(e/\)(Xem lại đề)
\(x^4+x^3+x^2+2x+1\)
\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)
\(=x^3\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^3+x+1\right)\)
\(f/\)
\(x^3-4x^2+4x-1\)
\(=x\left(x^2-4x+4\right)-1^2\)
\(=x\left(x-2\right)^2-1\)
\(=[\sqrt{x}\left(x-2\right)]^2-1\)
\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)
\(c/\)
\(x^3+x^2-4x-4\)
\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)
\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+3x+2\right)\)
\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
Bài 1:Phân tích đa thức thành nhân tử
a)x^4 +16 b)5x^2 -5y^2
c)x^4y^4 +4 D)2x^4 -32
Bài 3: Phân tích đa thức thành nhân tử
a)4x-4y+x^2-2xy+y^2 b)x^4 -4x^3 -8x^2 +8x
c)x^3 +x^2-4x-4 d)x^4-x^2+2x-1
e)x^4 +x^3 +x^2 +1 j)x^3-4x^2+4x-1
bài 1 : giải phương trình:
a. \(\sqrt{x+2\sqrt{ }x-1}=2\)
b. \(\sqrt{x^2-4x+4}=\sqrt{4x^212x+9}\)
c.\(\sqrt{x+4\sqrt{ }x-4}=2\)
d. \(\sqrt{x^2-6x+9}=2\)
e. \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
f. \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)
e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)
c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)
\(\Leftrightarrow x-4=0\)
hay x=4
a) \(\sqrt{x-1+2\sqrt{x-1}.1+1^2}=2;đk:x\)≥1
⇔\(\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}.1+1^2}=2\left(hđt-1\right)\)
⇔\(\sqrt{\left(\sqrt{x-1}+1\right)^2=2}\)
⇔|\(\sqrt{x-1}+1\)|=2
⇔\(\left[{}\begin{matrix}\sqrt{x+1}-1=2\\\sqrt{x+1-1}=-2\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\sqrt{x+1}=3\\\sqrt{x+1}=-1\left(L\right)\end{matrix}\right.\)⇔x+1=9⇔x=10(TM)
→S={10}
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
Rút gọn các biểu thức sau
a. (x-2 ) .(x^2 +2x + 4 ) - (x^3 +2)
b. (x+4) . (x^2 -4x + 16 ) - (x-4) . (x^2 + 4x +16)
c. (x-2 )^3 - x (x+1). (x+1). (x+1) +6x( x-3)
d,(x-2).(x^2-2x+4 ) .(x+2) .(x^2 +4x +4 )