(x^2+6x+8)(x^2+8x+15)-24+0
(x^2+6x+8)(x^2+8x+15)-24=0
(x^2+x-2)(x^2+9x+18)-28=0
(x^2-1)^2-x(x^2-1)-2x^2=0
(x^2+4x+8)^2+3x(x^2+4x+8)+2x^2=0
kho..............wa...................troi................thi......................ret.....................ai..............tich...............ung.....................ho....................minh..................voi................ret............wa
a)(x^2 -1)^2-x(x^2-1)-2x^2=0
b)(x^2 + 6x+8)(x^2+8x+15)-24=0
c)(x^2+ x- 2)*(x^2+ 9x+18)-28=0
d)(x^2 +4x+8)^2+3x(x^2+4x+8)+2x^2=0
(x2+6x+8)(x2+8x+15)-24
\(=\left(x+2\right)\left(x+4\right)\left(x+3\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
phan tich da thuc thanh nhan tu d/ (x^2 +6x+8) (x^2+8x+15)-24
(x2 + 2.x.3 + 32 - 1).(x2 + 2.x.4 + 16 - 1) - 24
=[(x+3)2 - 1]. [(x+4)2-1] -24
=(x+3+1)(x+3-1)(x+4+1)(x+4-1) - 24
=(x+4)(x+2)(x+5)(x-3) - 24
(x2+6x+8)(x2+8x+15)-24
<=>(x2+4x+2x+8)(x2+5x+3x+15)-24
<=> [x(x+4)+2(x+4)][x(x+5)+3(x+5)]-24
<=> (x+4)(x+2)(x+5)(x+3)-24
<=> (x+4)(x+3)(x+2)(x+5)-24
<=>(x2+7x+12)(x2+7x+10)
đặt t=x2+7x+11 ta có:
(t-1)(t+1)-24
<=> t2-1-24
<=>t2-25
<=>(t-5)(t+5)
thay t=x2+7x+11 vào ta có:
(x2+7x+11-5)(x2+7x+11+5)
<=>(x2+7x+6)(x2+7x+16)
Phân tích thành nhân tử.
a, ( x + y )2 + 2x + 2y - 15
b, ( x2 + x + 1)( x2 + x + 2) - 12
c, ( x2 + 6x + 8)(x2 + 8x + 15 ) - 24
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
1) (x+2)(x+3)(x+4)(x+5)-24
2) (x2+8x+7)(x2+8x+15)+15
3) x3+4x2+5x+2
4) 2x4-3x3-7x2+6x+8
AI BIẾT CÂU NÀO THÌ GIÚP MÌNH VỚI !!!
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
c) \(x^3+4x^2+5x+2\)
\(=x^3+x^2+3x^2+3x+2x+2\)
\(=x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x+2\right)\)
\(=\left(x+1\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+1\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\)
Phân tích các đa thức sau thành nhân tử.
1) a^2+ab+2b-4 2) x^3-x 3) x^2-6x+8 4) ab+b^2-3a-3b 5) x^3-4x^2-8x+8
6)9x^2+6x-8 7)x^2-y^2-4x+4 8)5x^3-10x^2+5x 9) 3x^2-8x+4 10) 4x^2-4x-3
11) x^2-7x+12 12)x^2-5x-14 13) 3x^2-7x+2 14) a.(x^2+1)-x.(a^2-1) 15) x^4+4
16) (x+2).(x+3).(x+4).(x+5)-24 17) (a+1).(a+3).(a+5).(a+7)+15
tìm x
x^2+3x-2x-6=0
x^2+6x+x+6=0
x^2-4x+5x-20=0
x^2-8x-3x+24=0
a) x^2 +3x-2x-6=0
x^2 + x = 6
x^2 + 0.5x + 0.5x = 6
x (x + 0.5) + 0.5 (x + 0.5) =5.75
(x+0.5)^2 = 5.75
1) (4-3x) (10x-5)=0
2) (7-2x) (4+8x) = 0
3) (9-7x) (11-3x) = 0
4) (7-14x) (x-2) = 0
5) (2x+1) (x-3) = 0
6) (8-3x) (-3x+5) = 0
7) (16-8x) (2-6x) = 0
8) (x+4) (6x-12) = 0
9) (11-33x) (x+11) = 0
10) (x-1/4) (x+5/6) = 0
11) (7/8-2x) (3x+1/3) = 0
12) 3x - 2x^2 = 0
13) 5x + 10x^2 = 0
14) 4x + 3x^2 = 0
15) -8x^2 + x =0
16) 10x^2 - 15x = 0
17) x^2 -4 =0
18) 9 - x^2 = 0
19) x^2 -1 = 0
20) (x-3) (2x-1) = (2x-1) ( 2x+3)
21) (5+4x) (-x+2) = (5+4x) (7+5x)
22) (4+x) (x-5) = (3x-8) (x-5) = 0
23) (3x-8) (7-21x) - (9+2x) (7-21x)
24) (10+ 7x) (x+1) = (9x-2)(x-1)
25) (9x-4) (x-1/2) - (x-1/2) (6+x) = 0
26) 9x^2 - 1 = (3x-1) (x+4)
27) (x+7) (3x+1) = 49-x^2
28) (2x+1)^2 = (x-1)^2
29)x^3- 5x^2+6x = 0
30) 3x^2 + 5x + 2 = 0
Giảii giúpp mìnhh đyy mọii ngườii .
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha