Cho hai số thực x;y thỏa mãn x 2 + y 2 ≥ 9 và log x 2 + y 2 x 8 x 2 + 8 y 2 - 7 x - 7 y 2 ≥ 2 . Gọi giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=3x+y lần lượt là M và m. Khi đó giá trị của biểu thức M + 2m bằng
Cho x, y là hai số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
A. x n m = x n m
B. x m y n = x y m + n
C. x m x n = x m + n
D. x y n = x n y n
Cho hai số thực x,y. Chứng minh rằng nếu xy+x+y=-1 thì trong hai số x,y có ít nhất một số bằng -1
Ta có : xy + x + y = -1
=> x(y + 1) + y + 1 = -1 + 1
=> (x + 1)(y + 1) = 0
=> \(\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\)(đpcm)
Vậy nếu xy + x + y = - 1 thì có ít nhất 1 số bằng - 1
xy + x + y = -1
<=> xy + x + y + 1 = 0
<=> x( y + 1 ) + 1( y + 1 ) = 0
<=> ( x + 1 )( y + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\) ( đpcm )
\(xy+x+y=-1\)
\(< =>xy+x+y+1=0\)
\(< =>x\left(y+1\right)+\left(y+1\right)=0\)
\(< =>\left(x+1\right)\left(y+1\right)=0\)
\(< =>\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\)ez
Cho x,y là hai số thực dương và m,n là 2 số thực tùy ý. Đẳng thức nào sau đây là sai?
A. x m . x n = x m + n
B. x m n = x m . n
C. x . y n = x n . y n
D. x m n = x m n
Đáp án D
Các đáp án A, B, C đều đúng, chỉ có D là sai.
Chọn phương án D.
Cho phương trình ( x + x + 1 ) ( m x + 1 + 1 x + 16 x 2 + x 4 ) = 1 với m là tham số thực. Tìm số các giá trị nguyên của m để phương trình có hai nghiệm thực phân biệt
A. 3.
B. 4.
C. 5.
D. 6
Cho hai số thực phân biệt x,y thoả mãn x^3+y^3=8-6xy.tính x+y
\(x^3+y^3=8-6xy\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-8+6xy=0\)
\(\Leftrightarrow\left(x+y\right)^3-2^3-3xy\left(x+y-2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+4\right]-3xy\left(x+y-2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+4\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(2x^2+2y^2-2xy+4x+4y+8\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y-2=0\\\left(x-y\right)^2=\left(x+2\right)^2=\left(y+2\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x=y=-2\left(loại\right)\end{matrix}\right.\)
Cho hai số thực x,y sao cho x^2+y^2+xy=3.Tìm GTLN của S=x+y
Ta có :
\(x^2+y^2+xy=3\)
\(\Rightarrow\left(x+y\right)^2-xy=3\)
\(\Rightarrow \left(x+y\right)^2=3+xy\)
hay \(S^2=3+xy\le3+\frac{\left(x+y\right)^2}{4}=3+\frac{S^2}{4}\)
\(\Rightarrow S^2\le3+\frac{S^2}{4}\)
\(\Rightarrow S^2\le4\)
\(\Rightarrow-2\le S\le2\)
GTLN của S = 2
Cho phương trình ( x + x + 1 ) ( m x + 1 + 1 x + 16 x 2 + x 4 ) = 1 với m là tham số thực. Tìm số các giá trị nguyên của m để phương trình có hai nghiệm thực phân biệt.
Cho hàm số f ( x ) = 1 2 log 2 2 x 1 - x và hai số thực m, n thuộc khoảng (0;1) sao cho m + n = 1 . Tính f ( m ) + f ( n )
A. 2
B. 0
C. 1
D. 1 2
Cho hai số thực x,y thỏa mãn \(x^2+y^2-xy=1\) . Tìm số thực k lớn nhất sao cho \(x^4+y^4-x^2y^2\ge k\)
Cho hai số thực x,y thỏa mãn \(x^2+y^2-xy=1\) . Tìm số thực k lớn nhất sao cho \(x^4+y^4-x^2y^2\ge k\)