Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 21:04

Hàm số a,b là các hàm số logarit

a: \(log_{\sqrt{3}}x\)

Cơ số là \(\sqrt{3}\)

b: \(log_{2^{-2}}x\)

Cơ số là \(2^{-2}=\dfrac{1}{4}\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 12:25

Vì \(\dfrac{1}{e}\simeq0,368< 1\)

\(\Rightarrow y=log_{\dfrac{1}{e}}\left(x\right)\) nghịch biến trên D = \(\left(0;+\infty\right)\)

Chọn C.

Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 22:25

0<1/e<1

=>\(log_{\dfrac{1}{e}}\left(x\right)\) nghịch biến 

=>C

Nguyễn Vi
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 6 2019 lúc 21:01

\(log_xy=log_yx=\frac{1}{log_xy}\Rightarrow\left(log_xy\right)^2=1\Rightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=\frac{1}{y}\end{matrix}\right.\)

Do \(log_x\left(x-y\right)\) tồn tại \(\Rightarrow x-y\ne0\Rightarrow x\ne y\Rightarrow x=\frac{1}{y}\)

\(log_x\left(x-y\right)=log_y\left(x+1\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+1\right)\)

\(\Leftrightarrow log_x\left[\left(x-\frac{1}{x}\right)\left(x+1\right)\right]=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+1\right)=1\)

\(\Leftrightarrow\left(x^2-1\right)\left(x+1\right)=x\Leftrightarrow x^3+x^2-2x-1=0\)

Pt này nghiệm xấu, đề bài có vấn đề

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 11:31

\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)

Nguyễn Vi
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 6 2019 lúc 8:55

ĐKXĐ: \(x\ne y\)

\(log_xy=\frac{1}{log_xy}\Leftrightarrow log_x^2y=1\Leftrightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y\left(l\right)\\x=\frac{1}{y}\end{matrix}\right.\)

\(log_x\left(x-\frac{1}{x}\right)=log_{x^{-1}}\left(x+\frac{1}{x}\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+\frac{1}{x}\right)\)

\(\Leftrightarrow log_x\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=1\)

\(\Leftrightarrow x^2-\frac{1}{x^2}=1\Leftrightarrow x^4-x^2-1=0\Rightarrow x^2=\frac{1+\sqrt{5}}{2}\Rightarrow y^2=\frac{1}{x^2}=\frac{-1+\sqrt{5}}{2}\)

\(\Rightarrow x^2+xy+y^2=\frac{1+\sqrt{5}}{2}+1+\frac{-1+\sqrt{5}}{2}=\sqrt{5}+1\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 20:01

Đáp án C.

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 23:10

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)

b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)

\(=\dfrac{2a+b}{a+b}\)

c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)

\(=\dfrac{a+b}{1-a}\)

Buddy
Xem chi tiết
Hà Quang Minh
25 tháng 8 2023 lúc 10:06

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 19:56

\(2log_2y=2+\dfrac{1}{2}log_2x\)

=>\(log_2y^2=log_22^2+log_2x^{\dfrac{1}{2}}\)

=>\(log_2y^2=log_2\left(2^2\cdot x^{\dfrac{1}{2}}\right)\)

=>\(y^2=4\cdot x^{\dfrac{1}{2}}=4\sqrt{x}\)

Đoàn Thái Sơn
Xem chi tiết