Cho dãy số ( u n ) xác định bởi u 1 = 5 , u n + 1 n + 1 = u n n + 2 n + 2 . 3 n với mọi n ≥ 1 . Tìm số nguyên nhỏ nhất thỏa mãn u n n - 2 n > 5 100
A. 146.
B. 233.
C. 232.
D. 147.
Cho dãy số u ( n ) xác định bởi u ( 1 ) = 1 ; u ( m + n ) = u ( m ) + u ( n ) + m n , ∀ m , n ∈ ℕ * . Tính u ( 2017 )
A. 2035153
B. 2035154
C. 2035155
D. 2035156
Chọn A
Phương pháp: Tìm công thức số hạng tổng quát
Cách giải: Ta có:
u ( 1 ) = 1
u ( 2 ) = u ( 1 ) + u ( 1 ) = 2 u ( 1 ) + 1
u ( 3 ) = u ( 2 ) + u ( 1 ) = 3 u ( 1 ) + 1 + 2
u ( 4 ) = u ( 3 ) + u ( 1 ) = 4 u ( 1 ) + 1 + 2 + 3
. . .
u ( 2017 ) = u ( 2016 ) + u ( 1 ) = 2017 u ( 1 ) + 1 + 2 + 3 . . . + 2016
⇒ u ( 2017 ) = 1 + 2 + 3 . . . + 2016 + 2017 = 2035153
Cho dãy số xác định bởi u1=1 , u n+1 = \(2un+\frac{n-1}{n^2+3n+2}\). khi đó u 2018 bằng
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
cho dãy số Un được xác định bởi: U1 = 1 ; U2 = 2 ; U3 = 3 ; Un+3 = 2Un+2 + Un+1 - Un ( n thuộc N*) . Tìm U25 ? ( giải theo công thức trên máy tính casio dùm mình nhé)
Cho dãy số được xác định bởi: U1=12
\(\frac{2\cdot U_{n+1}}{n^2+5n+6}=\frac{U_n+n^2-n-2}{n^2+n}\)
Tìm số hạng tổng quát của dãy số
Cho dãy số thực (un) xác định bởi \(\left\{{}\begin{matrix}u_1=2019\\u^2_n+2018u_n-2020u_{n+1}+1=0\left(n\in N\cdot\right)\end{matrix}\right.\). Tìm giới hạn của dãy số (Sn), biết: Sn = \(\dfrac{1}{u_1+2019}+\dfrac{1}{u_2+2019}+...+\dfrac{1}{u_n+2019}\)
Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước
\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)
\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)
\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)
\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)
\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)
\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)
\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Thế n=1;2;...;n ta được:
\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)
\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)
...
\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)
\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)
Xét dãy ( Un ) ; n = 1,2,3,.... xác định bởi U0 = 2, Un = 3Un-1 + 2n3 - 9n2 + 9n - 3
a) Lập quy trình tính Un ?
b) Tính U20
Bài 1: Cho dãy số u1= 2; u2 = 20; Un+1 = 2Un + Un-1 ( n ≥ 2)
a) Viết quy trình ấn phím liên tục tính Un và Sn ( với Sn = u1 + u2 +…+ un)
b) TÍnh Un; Sn với n =20; n = 30
Bài 2: Cho dãy số được xác định bởi: u1 = 1; u2 = 2;\(U_{n+2}=\hept{\begin{cases}2U_{n+1}+3U_n\left(n:le\right)\\2U_n+3U_{n+1}\left(n:chan\right)\end{cases}}\)
a) Tính giá trị u10; u15; u21.
b) Gọi Sn là tổng của n số hạng đầu tiên của dãy số Un . Tính S10;S15; S20
Mong mn giup do
1. a) Lấy biến C để tính un và E để tính sn và D là biến đếm. Ta có quy trình bấm phím liên tục
D=D+1:C=2B+A:E=E+C:A=B:B=C
CALC giá trị A=2; B=20; D=2; E=22 nhấn "=" liên tục
Kết quả: u20 = 137990600; s20 = 235564680; u30 = 928124755084; s30 = 1584408063182
2. Lấy A làm biến lẻ, B làm biến chẵn, C là tổng S, D là biến đếm. Ta có quy trình bấm phím liên tục
D=D+1:A=2B+3A:C=C+A:D=D+1:B=2A+3B:C=C+B
CALC giá trị D=2; A=1; B=2; C=3 nhấn "=" liên tục
a) Kết quả: u10 = 28595; u15 = 8725987; u20 = 3520076983
b) Kết quả: s10 = 40149; s15 =13088980 ; s20 = 4942439711
1. Tìm 20 số hạng đầu của dãy số (un) cho bởi:
\(\hept{\begin{cases}u_1=1\\u_{n+1}=\frac{u_{n+2}}{u_{n+1}}\end{cases}},n\inℕ^∗\)
2. Cho dãy số: u1=2; u2=3; u3=18; u4= 67; u5=184
Tính u10; u11; u12; u13; u14; u15
Cho dãy xác định \(\left\{{}\begin{matrix}u\left(1\right)=\dfrac{1}{4}\\u\left(n+1\right)=\left(u\left(n\right)\right)^2+\dfrac{u\left(n\right)}{2}\end{matrix}\right.\)
CM với mọi n thì 0<u(n)<\(\dfrac{1}{4}\) và\(\dfrac{u\left(n+1\right)}{u\left(n\right)}\le\dfrac{3}{4}\)
Từ đó suy ra limu(n)=o