Cho hàm số y = x 3 - 3 x 2 + 5 . Mệnh đề nào dưới đây đúng
A. Hàm số nghịch biến trên khoảng - ∞ ; 0
B. Hàm số đồng biến trên khoảng 0 ; 2
C. Hàm số nghịch biến trên khoảng 2 ; + ∞
D. Hàm số nghịch biến trên khoảng 0 ; 2
Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây.
I. Hàm số đồng biến trên khoảng (-3;-2)
II. Hàm số đồng biến trên khoảng − ∞ ; 5 .
III. Hàm số nghịch biến trên khoảng − 2 ; + ∞ .
IV. Hàm số đồng biến trên khoảng - ∞ ; - 2
Số mệnh đề sai trong các mệnh đề trên là
A. 2.
B. 3.
C. 4.
D. 1.
Cho hàm số y = f(x) có bảng biến thiên như hình dưới đây
I. Hàm số đồng biến trên khoảng - 3 ; - 2
II. Hàm số đồng biến trên khoảng - ∞ ; 5
III. Hàm số nghịch biến trên các khoản - 2 ; + ∞
IV. Hàm số đồng biến trên khoảng - ∞ ; - 2
Số mệnh đề sai trong các mệnh đề trên là
A. 2
B. 3
C. 4
D. 1
Đáp án D
Khẳng định số II sai.
Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng - ∞ ; - 2
Cho hàm số y = f(x) có bảng biến thiên như hình dưới đây.
I. Hàm số đồng biến trên khoảng (-3;-2)
II. Hàm số đồng biến trên khoảng − ∞ ; 5 .
III. Hàm số nghịch biến trên các khoản − 2 ; + ∞ .
IV. Hàm số đồng biến trên khoảng − ∞ ; − 2 .
Số mệnh đề sai trong các mệnh đề trên là
A. 2
B. 3
C. 4
D. 1
Đáp án D
Khẳng định số II sai. Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( − ∞ ; − 2 )
Câu 4. Cho hàm số \(y = x^4 - 2x^2 -3\). Mệnh đề nào sau đây là mệnh đề đúng?
A. Hàm số nghịch biến trên \((-1; 0).\)
B. Hàm số đồng biến trên \((-\infty;0).\)
C. Hàm số nghịch biến trên \((-1; 1).\)
D. Hàm số nghịch biến trên \((0; +\infty).\)
\(y'=0\Leftrightarrow4x^3-4x=0\Leftrightarrow4x\left(x^2-1\right)=0\\ \Leftrightarrow x=\pm1.và.x=0\)
\(HSNB:\left(-\infty;-1\right)\cup\left(0;1\right)\\ HSĐB:\left(-1;0\right)\cup\left(1;+\infty\right)\)
cho hàm số y=f(x)=-x^2-2x+1. Mệnh đề nào sau đây là đúng? A. Hàm số nghịch biến trên khoảng (-1;+vô cực) B. Hàm số nghịch biến trên khoảng (-vô cực;-1) C. Hàm số đồng biến trên khoảng (-1;+vô cực) D. Hàm số đồng biến trên khoảng (-vô cực;0)
B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)
Cho hàm số y = f x liên tục trên R và có bảng biến thiên như hình dưới đây. Bao nhiêu mệnh đề sai trong các mệnh đề sau đây?
I. Hàm số đồng biến trên các khoảng - ∞ ; - 5 và ( - 3 ; - 2 ] .
II. Hàm số đồng biến trên khoảng - ∞ ; 5 .
III. Hàm số nghịch biến trên khoảng - 2 ; + ∞ .
IV. Hàm số đồng biến trên khoảng ( - ∞ ; - 2 ] .
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình dưới đây:
Xét các mệnh đề sau:
(I). Hàm số nghịch biến trên khoảng
(II). Hàm số đồng biến trên khoảng
(III). Hàm số có ba điểm cực trị
(IV). Hàm số có giá trị lớn nhất bằng 2.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 4
B. 2
C. 3
D. 1
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình dưới đây:
Xét các mệnh đề sau:
(I). Hàm số nghịch biến trên khoảng (0;1)
(II). Hàm số đồng biến trên khoảng (-1;2)
(III). Hàm số có ba điểm cực trị
(IV). Hàm số có giá trị lớn nhất bằng 2.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 4
B. 2
C. 3
D. 1
Chọn đáp án B
Phương pháp
Dựa vào đồ thị hàm số xác định các khoảng đơn điệu, các điểm cực trị và GTLN, GTNN của hàm số.
Cách giải
Dựa vào đồ thị hàm số ta thấy hàm số đã cho
+) Đồng biến trên (-1;0) và (1;+∞), nghịch biến trên (-∞;-1) và (0;1).
+) Hàm số có 3 điểm cực trị.
+) Hàm số không có GTLN.
Do đó các mệnh đề (I), (III) đúng.
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số g(x)đạt cực tiểu tại x=0
III. Hàm số g(x) đạt cực đại tại x=2
IV. Hàm số g(x) đồng biến trên khoảng (-2;0)
V. Hàm số g(x) nghịch biến trên khoảng (-1;1)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A.1
B.4
C.3
D.2
Chọn D
Xét hàm số .
Có
.
Ta lại có thì
. Do đó
thì
.
thì
. Do đó
thì
.
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại
LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại
LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng
LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng
LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình dưới đây.
(I). Hàm số nghịch biến trên khoảng (0;1).
(II). Hàm số đồng biến trên khoảng (-1;2).
(III). Hàm số có ba điểm cực trị.
(IV). Hàm số có giá trị lớn nhất bằng 2.
Số mệnh đề đúng trong các mệnh đề sau là:
A. 4
B. 2
C. 3
D. 1
Phương pháp:
Sử dụng cách đọc đồ thị hàm số.
Cách giải:
Từ đồ thị hàm số ta thấy
+ Đồ thị đi xuống trên khoảng 0;1
nên Hàm số nghịch biến trên
khoảng 0;1. Do đó (I) đúng
+ Đồ thị đi lên trên khoảng 1;0,
đi xuống trên khoảng 0;1và đi
lên trên khoảng 1;2 nên trên
khoảng 1;2 hàm số không
hoàn toàn đồng biến. Do đó (II) sai.
+ Đồ thị hàm số có ba điểm hai
điểm cực tiểu và một điểm cực
đại nên (III) đúng.
+ Giá trị lớn nhất của hàm số là
tung độ của điểm cao nhất của đồ
thị hàm số nên (IV) sai.
Như vậy ta có hai mệnh đề đúng
là (I) và (III).
Chọn B.