Cho y = 2 x 2 − 4 . Biết ảnh của (P) qua phép tịnh tiến theo vecto v → a ; b là (P’): 2 x 2 − 4 x + 1 . Tính giá trị biểu thức P = a + b .
A. 3
B. 2
C. 1
D. 4
cho vecto v(-1;2) đường cong C có pt (x-2)^2 + (y-3)^2 = 9 tìm pt của đường cong C' là ảnh của C qua phép tịnh tiến theo v
(C) có \(\left\{{}\begin{matrix}I\left(2;3\right)\\R=3\end{matrix}\right.\)
\(T_{\overrightarrow{v}}\left(I\right)=I'\left(x',y'\right)\)\(\Rightarrow\left\{{}\begin{matrix}x'=x+a=2+\left(-1\right)=1\\y'=y+a=3+2=5\end{matrix}\right.\Rightarrow I'\left(1,5\right)\)
\(T_{\overrightarrow{v}}\left(C\right)=\left(C'\right)\) có \(\left\{{}\begin{matrix}I'\left(1,5\right)\\R=3\end{matrix}\right.\)
\(\Rightarrow\) \(\left(C'\right):\left(x-1\right)^2+\left(y-5\right)^2=3\)
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Cho 2 đường tròn (C) :(x-3)^2 +(y+1)^2=5 và (T) : x^2+y^2 -2x +4y +1 =0
a) Tìm ảnh của (C) và (T) qua phép tịnh tiến theo vecto v với vecto v (-3;2)
b) Tìm ảnh của đường tròn tâm I(-1;6) R=3 qua phép tịnh tiến theo vecto v
Cho điểm M(-4;2) và vecto v =(3;-1). Tìm điểm N biết M là ảnh của N qua phép tịnh tiến theo vecto v.
\(T_{\overrightarrow{v}}\left(N\right)=M\Rightarrow\overrightarrow{NM}=\overrightarrow{v}\)
\(\Rightarrow\left\{{}\begin{matrix}x_N+3=-4\\y_N-1=2\end{matrix}\right.\) \(\Rightarrow N\left(-7;3\right)\)
Cho ∆: 2x-y=0. Ảnh của đường thẳng ∆ qua phép dời hình bằng cách thực hiện liên tiếp phép quay tâm O, góc -90° phép tịnh tiến theo vecto v=(3;-2). ∆'=?
Tìm (C) biết (C') là ảnh của (C) qua phép tịnh tiến vecto v(3;-1) và
(C'): (x-4)2 + y2 = 16
(C) có \(\left\{{}\begin{matrix}I\left(4,0\right)\\R=4\end{matrix}\right.\)
\(T_{\overrightarrow{v}}\left(I\right)=I'(x',y')\Rightarrow\left\{{}\begin{matrix}x'=x+a=4+3=7\\y'=y+a=0+\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow I'\left(7,-1\right)\)
\(T_{\overrightarrow{v}}\left(C\right)=\left(C'\right)\) có tâm \(I'\left(7,-1\right)R=4\)
\(\Rightarrow\left(C'\right):\left(x-7\right)^2+\left(y+1\right)^2=4\)
Trong mặt phẳng Oxy cho pt (C) : (x+3)2 + (y-1)2 =5 và v = (-3;1) . Viết pt đường tròn (C’) biết (C’) là ảnh của (C) qua phép đồng dạng có được bằng thực hiện liên tiế phép tịnh tiến theo vecto V và phép vị tự tâm O tỷ số k= 2.
Tìm ảnh của đường thẳng d : 2 x + 3 y − 2 = 0 qua phép tịnh tiến theo vecto v → = 2 ; 3 là
A. 2 x + 3 y + 15 = 0
B. 2 x − 3 y + 15 = 0
C. 2 x − 3 y − 15 = 0
D. 2 x + 3 y − 15 = 0
Cho hình vuông ABCD có tâm I.
a.Xác định hình H1 là ảnh của hình vuông ABCD qua phép tịnh tiến theo vecto AI.
b. Xác định hình H2 là ảnh H1 qua phép tịnh tiến vecto IB.
c. Có 1 phép tịnh tiến nào biến H2 thành hình vuông ABCD.