Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An
Xem chi tiết
cuacon
Xem chi tiết
tâm toàn
23 tháng 7 2016 lúc 9:40

\(a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b\right)\left(a+b-c\right)\)

Nguyễn Thị Huyền Thương
Xem chi tiết
LIÊN
Xem chi tiết
Trần Việt Linh
2 tháng 10 2016 lúc 21:11

\(x^2-2xy+y^2-xz+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

Phương An
2 tháng 10 2016 lúc 21:12

\(x^2-2xy+y^2-xz+yz=\left(x^2-2xy+y^2\right)-\left(xz-yz\right)=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

AN TRAN DOAN
3 tháng 10 2016 lúc 19:40

x- 2xy + y2 - xz + yz = (x-y)2 - xz + yz 

                                    = (x-y)2 - (xz - yz )

                                    = (x-y)2 - z(x-y)

                                    =  (x-y)(x-y-z)   

An
Xem chi tiết
Gaming 4K
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 14:03

a) Ta có: \(x^2-y^2-2x+2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

b) Ta có: \(2x+2y-x^2-xy\)

\(=2\left(x+y\right)-x\left(x+y\right)\)

\(=\left(x+y\right)\left(2-x\right)\)

c) Ta có: \(x^2-25+y^2+2xy\)

\(=\left(x+y\right)^2-25\)

\(=\left(x+y-5\right)\left(x+y+5\right)\)

d) Ta có: \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

e) Ta có: \(x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

f) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

linh nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 11 2021 lúc 7:59

\(1,\\ a,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ b,=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\\ c,=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\\ d,=x\left(x-2y\right)+t\left(x-2y\right)=\left(x+t\right)\left(x-2y\right)\\ 2,\\ \Rightarrow x^2-4x+4-x^2+9=6\\ \Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\\ 3,\\ a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\\ b,-x^2+4x-5=-\left(x-2\right)^2-1\le-1< 0\)

Hoàng Ninh
Xem chi tiết
Lê Tài Bảo Châu
5 tháng 8 2019 lúc 12:20

c) \(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

Lê Tài Bảo Châu
5 tháng 8 2019 lúc 12:21

b) \(x^3+3x^2-3x-1\)

\(=\left(x^3-1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

Lê Tài Bảo Châu
5 tháng 8 2019 lúc 12:24

a) \(x^2y+4xy+4y-y^3\)

\(=y\left(x^2+4x+4-y^2\right)\)

\(=y\left[\left(x+2\right)^2-y^2\right]\)

\(=y\left(x+2-y\right)\left(x+2+y\right)\)

lethaovy
Xem chi tiết
Ngọc Châu
8 tháng 8 2018 lúc 17:08

1) \(x^2-2xy+y^2-xz+yz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(xz-yz\right)\)

\(\Leftrightarrow\left(x-y\right)^2-z\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x-y-z\right)\)

2)\(x^2-y^2-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)\)

Phạm Tuấn Đạt
8 tháng 8 2018 lúc 17:09

\(a,x^2-2xy+y^2-xz+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

\(b,x^2-y^2-x+y\)

\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)