Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Quang
Xem chi tiết
Doãn Đức Duy
8 tháng 5 2023 lúc 22:47

A = \(\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+...+\dfrac{3^2}{196.199}\)

A = \(\dfrac{3.3}{1.4}+\dfrac{3.3}{4.7}+...+\dfrac{3.3}{196.199}\)

A = \(3.\dfrac{3}{1.4}+3.\dfrac{3}{4.7}+...+3.\dfrac{3}{196.199}\)

A = \(3\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{196.199}\right)\)

A = \(3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{196}-\dfrac{1}{199}\right)\)

A = \(3\left(1-\dfrac{1}{199}\right)\) = \(3.\dfrac{198}{199}\) = \(\dfrac{594}{199}\)

Nguyễn Quang Huy
Xem chi tiết
Nguyễn Quang Anh Tuấn
26 tháng 4 2020 lúc 20:43

Tách ra là xong nhé!!

S=1/2-1/100=49/100

P=1-1/94=93/94

k mình đúng với!!!!

Khách vãng lai đã xóa
Vũ Ngọc Diệp
Xem chi tiết
Thuỳ Linh Nguyễn
6 tháng 3 2023 lúc 21:41

\(B=1-\dfrac{3}{1\cdot4}-\dfrac{3}{4\cdot7}-...-\dfrac{3}{2020\cdot2023}\\ =1-\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2020\cdot2023}\right)\\ =1-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\\ =1-\left(1-\dfrac{1}{2023}\right)\\ =1-\dfrac{2022}{2023}=\dfrac{1}{2023}\)

Yeutoanhoc
6 tháng 3 2023 lúc 21:41

`B=1-3/(1.4)-3/(4.7)-3/(7.10)-....-3/(2020.2023)`

`B=1-(3/(1.4)+3/(4.7)+.....+3/(2020.2023))`

`B=1-(1-1/4+1/4-1/7+.....+1/2020-1/2023)`

`B=1-(1-1/2023)`

`B=1-1+1/2023=1/2023`

Như An
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 9 2021 lúc 18:12

Bài 1:

\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)

\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)

\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)

\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)

\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bài 2: 

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)

 

Nguyễn Thị Hoài Anh
Xem chi tiết
minhthuy phamthi
Xem chi tiết
Trần Thị Hương Lan
18 tháng 5 2018 lúc 10:57

A = \(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{2015\cdot2016}\)

A = \(\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{40\cdot43}\right)+\left(\dfrac{1}{2015\cdot2016}\cdot3\right)\)

A = \(\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}\right)+\left(\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)\cdot3\right)\)

A = \(\left(1-\dfrac{1}{43}\right)+\dfrac{1}{1354080}=\dfrac{42}{43}+\dfrac{1}{1354080}=\dfrac{56871403}{58225440}\)

minhthuy phamthi
Xem chi tiết
Hiiiii~
17 tháng 5 2018 lúc 20:44

Giải:

\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{2015.2018}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)

\(\Leftrightarrow A=\dfrac{42}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)

\(\Leftrightarrow A=0,977240464-\dfrac{1}{2018}\)

\(\Leftrightarrow A=0,9767449238\approx0,98\)

Vậy ...

Oceane Rax HLLN
Xem chi tiết
Phạm Văn An
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 21:08

\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\frac{102}{103}\)

\(B=\frac{34}{103}\)

%$H*&
3 tháng 5 2019 lúc 21:11

Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)

\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)

Lê nguyễn phương linh
3 tháng 5 2019 lúc 21:58

Thằng an mất dạy :))) 
#Lê_Linh

Lili sakoto
Xem chi tiết