Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Trần Minh Hằng
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 9 2020 lúc 7:07

\(D=2\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)-3\left(sin^4x+cos^4x\right)\)

\(=2\left(sin^4x+cos^4x\right)-2sin^2x.cos^2x-3\left(sin^4x+cos^4x\right)\)

\(=-\left(sin^4x+2sin^2x.cos^2x+cos^4x\right)\)

\(=-\left(sin^2x+cos^2x\right)^2=-1\)

Luân Đinh Tiến
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2021 lúc 13:23

\(VT=\dfrac{3}{4}-\dfrac{1}{2}-\dfrac{1}{2}cos\left(2a-\dfrac{2\pi}{3}\right)+\dfrac{1}{2}cos\left(2a-\dfrac{\pi}{3}\right)+\dfrac{1}{2}cos\left(\dfrac{\pi}{3}\right)\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\left[cos\left(2a-\dfrac{\pi}{3}\right)-cos\left(2a-\dfrac{2\pi}{3}\right)\right]\)

\(=\dfrac{1}{2}-sin\left(2a-\dfrac{\pi}{2}\right)sin\left(\dfrac{\pi}{6}\right)\)

\(=\dfrac{1}{2}+\dfrac{1}{2}cos2a=\dfrac{1}{2}+\dfrac{1}{2}\left(2cos^2a-1\right)=cos^2a\)

Thầy Tùng Dương
Xem chi tiết
Nguyễn Xuân Anh
23 tháng 3 2022 lúc 21:05

\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\) 

\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)

Khách vãng lai đã xóa
Cao Thị Kim Ngân
18 tháng 7 2022 lúc 10:43

a) \sin ^{4} x+\cos ^{4} x=\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} x
\begin{aligned}&=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x \\&=1-2 \sin ^{2} x \cos ^{2} x\end{aligned}

b) \dfrac{1+\cot x}{1-\cot x}=\dfrac{1+\dfrac{1}{\tan x}}{1-\dfrac{1}{\tan x}}=\dfrac{\dfrac{\tan x+1}{\tan x}}{\dfrac{\tan x-1}{\tan x}}=\dfrac{\tan x+1}{\tan x-1}

c) \dfrac{\cos x+\sin x}{\cos ^{3} x}=\dfrac{1}{\cos ^{2} x}+\dfrac{\sin x}{\cos ^{3} x}=\tan ^{2} x+1+\tan x\left(\tan ^{2} x+1\right)
=\tan ^{3} x+\tan ^{2} x+\tan x+1

Nguyễn Quốc Phương
13 tháng 9 2024 lúc 21:39

a) VT=(sin2x + cos x)2 - 2sinx . cosx = VP 

b) VT= \(\dfrac{1+\dfrac{1}{tanx}}{1-\dfrac{1}{tanx}}\)=VP

c) VT= \(\dfrac{1}{cos^2x}+\dfrac{sinx}{cosx}.\dfrac{1}{cos^2x}=1+tan^2x+tanx.\left(1+tan^2x\right)=VP\)

 

Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 15:56

\(cos^3xsinx-sin^3xcosx=sinx.cosx\left(cos^2x-sin^2x\right)=\dfrac{1}{2}sin2x.cos2x=\dfrac{1}{4}sin4x\)

\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2=1-\dfrac{1}{2}sin^22x\)

\(=1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{1}{4}\left(3+cos4x\right)\)

Buddy
Xem chi tiết
Quoc Tran Anh Le
21 tháng 9 2023 lúc 20:46

a)    Ta có:

\(\begin{array}{l}{\sin ^4}\alpha  - {\cos ^4}\alpha  = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha  + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha  - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha  - {\cos ^2}\alpha  - 1 + 2{\cos ^2}\alpha  = 0\\ \Leftrightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)

Đẳng thức luôn đúng

b)    Ta có:

\(\begin{array}{l}\tan \alpha  + \cot \alpha  = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)

Đẳng thức luôn đúng

Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 5 2020 lúc 23:46

\(2\left(sin^6x+cos^6x\right)+1=2\left(sin^2x+cos^2x\right)^3-6sin^2x.cos^2x\left(sin^2x+cos^2x\right)+1\)

\(=3-6sin^2x.cos^2x\) (1)

\(3\left(sin^4x+cos^4x\right)=3\left(sin^2x+cos^2x\right)^2-6sin^2x.cos^2x\)

\(=3-6sin^2x.cos^2x\) (2)

(1);(2) \(\Rightarrow\) đpcm

Buddy
Xem chi tiết
Hà Quang Minh
25 tháng 8 2023 lúc 1:40

a, Ta có: \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow\left(\dfrac{3}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos\alpha=\pm\dfrac{4}{5}\)

Vậy đẳng thức có thể đồng thời xảy ra.

b, Ta có: \(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\Rightarrow1+cot^2\alpha=\dfrac{1}{\left(\dfrac{1}{3}\right)^2}\Rightarrow cot\alpha=\pm2\sqrt{2}\)

Hai đẳng thức không thể đồng thời xảy ra.

c, Ta có: \(tan\alpha\cdot cot\alpha=1\Rightarrow3\cdot cot\alpha=1\Rightarrow cot\alpha=\dfrac{1}{3}\)

Đẳng thức có thể đồng thời xảy ra.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:16

a) Ta có: \({\left( {\sin \alpha  + \cos \alpha } \right)^2} = {\sin ^2}\alpha  + 2\sin \alpha \cos \alpha  + {\cos ^2}\alpha  = 1 + \sin 2\alpha \;\)

b) \({\cos ^4}\alpha  - {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) = \cos 2\alpha \;\)

Jackson Roy
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2019 lúc 14:46

Câu 3:

\(A=cos\frac{\pi}{7}.cos\frac{5\pi}{7}.cos\frac{4\pi}{7}=cos\frac{\pi}{7}.cos\left(\pi-\frac{2\pi}{7}\right).cos\frac{4\pi}{7}\)

\(A=-cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)

\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.2sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)

\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.sin\frac{2\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)

\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{4}sin\frac{4\pi}{7}.cos\frac{4\pi}{7}\)

\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{8}sin\frac{8\pi}{7}=-\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=\frac{1}{8}sin\frac{\pi}{7}\)

\(\Rightarrow A=\frac{1}{8}\)

Câu 4:

Đầu tiên ta chứng minh công thức:

\(tana+tanb=\frac{sina}{cosa}+\frac{sinb}{cosb}=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)

Áp dụng để biến đổi tử số:

\(tan30+tan60+tan40+tan50=\frac{sin90}{cos30.cos60}+\frac{sin90}{cos40.cos50}=\frac{1}{cos30.cos60}+\frac{1}{cos40.cos50}\)

\(=\frac{2}{cos90+cos30}+\frac{2}{cos90+cos10}=\frac{2}{cos30}+\frac{2}{cos10}=2\left(\frac{cos30+cos10}{cos30.cos10}\right)\)

\(=2\left(\frac{2cos20.cos10}{cos30.cos10}\right)=\frac{4.cos20}{cos30}=\frac{8\sqrt{3}}{3}.cos20\)

\(\Rightarrow A=\frac{\frac{8\sqrt{3}}{3}cos20}{cos20}=\frac{8\sqrt{3}}{3}\)

Câu 5:

\(cos54.cos4-cos36.cos86=cos54.cos4-cos\left(90-54\right).cos\left(90-4\right)\)

\(=cos54.cos4-sin54.sin4=cos\left(54+4\right)=cos58\)

Nguyễn Việt Lâm
11 tháng 4 2019 lúc 14:28

Câu 1:

\(A=\frac{1}{2sin10}-2sin70=\frac{1-4sin10.sin70}{2sin10}=\frac{1+2\left(cos80-cos60\right)}{2sin10}\)

\(=\frac{1+2cos80-1}{2sin10}=\frac{2cos80}{2sin10}=\frac{sin10}{sin10}=1\)

Câu 2:

\(cos10.cos30.cos50.cos70=cos10.cos30.\frac{1}{2}\left(cos120+cos20\right)\)

\(=\frac{1}{2}cos30\left(cos10.cos120+cos10.cos20\right)\)

\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}\left(cos30+cos10\right)\right)\)

\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}cos30+\frac{1}{2}cos10\right)\)

\(=\frac{1}{2}.\frac{\sqrt{3}}{2}\left(-\frac{1}{2}cos10+\frac{1}{2}\frac{\sqrt{3}}{2}+\frac{1}{2}cos10\right)\)

\(=\frac{3}{16}\)