(2x^2+3x-1)^2-5*(2x^2+3x+3)+24=0
Giải phương trình:
(2x^2+3x-1)^2-5(2x^2+3x+3)+24=0
Casio fx 570Vn PLUS lấy ra mà tình nghiệm
Có 1 nghiện là 0,5 tự tìm tiếp
(2x2+3x-1)2-5(2x2+3x+3)+24=0
Đặt a = 2x2 + 3x - 1, ta đc pt:
a2 - 5.(a + 4) + 24 = 0
=> a2 - 5a - 20 + 24 = 0
=> a2 - 5a + 4 = 0
=> (a - 4)(a - 1) = 0
=> a = 4 hoặc a = 1
+) Khi a = 4 => 2x2 + 3x - 1 = 4 => 2x2 + 3x - 5 = 0 => (x - 1)(2x + 5) = 0 => x = 1 hoặc x = -5/2
+) Khi a = 1 => 2x2 + 3x - 1 = 1 => 2x2 + 3x - 2 = 0 => (x + 2)(2x - 1) = 0 => x = -2 hoặc x = 1/2
Vậy x = 1 , x = -5/2 , x = -2 , x = 1/2
trời mìh mới có học lớp 5 làm sao mà giải nổi toán lớp 8 !!!!!!!hihihihihihi!!!!!!!!!!xin lỗi nha!
a) (x+1)(x+2)(x+4)(x+5)=40
b) (2x-5)^2 = (4x+7)^2
c) (2x^2+3x-1)^2 - 5(2x^2+3x+3)+24=0
a)-6
b)-6
c)0.3652593485...
ủng hộ neji đê mọi người ơi
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
tìm x
x^3 -2x^2+x-2=0
2x(3x-5)=10-6x
4-x=2(x-4)^2
4-6x+x(3x-2)=0
\(x^3-2x^2+x-2=0\\ \Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ Vậy:x=2\\ ---\\ 2x\left(3x-5\right)=10-6x\\ \Leftrightarrow6x^2-10x-10+6x=0\\ \Leftrightarrow6x^2-4x-10=0\\ \Leftrightarrow6x^2+6x-10x-10=0\\ \Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}6x-10=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)
\(4-x=2\left(x-4\right)^2\\ \Leftrightarrow4-x=2\left(x^2-8x+16\right)\\ \Leftrightarrow2x^2-16x+32+x-4=0\\ \Leftrightarrow2x^2-15x+28=0\\ \Leftrightarrow2x^2-8x-7x+28=0\\ \Leftrightarrow2x\left(x-4\right)-7\left(x-4\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\\ ---\\ 4-6x+x\left(3x-2\right)=0\\ \Leftrightarrow4-6x+3x^2-2x=0\\ \Leftrightarrow3x^2-8x+4=0\\ \Leftrightarrow3x^2-6x-2x+4=0\\ \Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
Tìm x biết \(\left(2x^2+3x-1\right)^2-5\left(2x^2+3x+3\right)+24=0\)
\(\left(2x^2+3x-1\right)^2-5\left(2x^2+3x+3\right)+24=0\)(1)
Đặt \(2x^2+3x+1=a\)
Thay vào (1) ta được \(\left(a-2\right)^2-5\left(a+2\right)+24=0\)
\(\Leftrightarrow a^2-4a+4-5a-10+24=0\)
\(\Leftrightarrow a^2-9a+18=0\)
\(\Leftrightarrow a^2-3a-6a+18=0\)
\(\Leftrightarrow\left(a-3\right)\left(a-6\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=6\end{matrix}\right.\)
Suy ra \(\left[{}\begin{matrix}2x^2+3x+1=3\\2x^2+3x+1=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0,5\\x=-2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{0,5;-2,5;1;-2\right\}\)
Phân tích đến đây r nha: \(\left(4x^3+16x^2+11x-10\right)\left(x-1\right)=0\)
(2x2+3x-1)2-5(2x2+3x+3)+24=0
tính sao anh em
Đặt \(2x^2+3x+1=y\).Ta có:
\(\left(y-2\right)^2-5\left(y+2\right)+24=0\)
\(\Leftrightarrow y^2-4y+4-5y-10+24=0\)
\(\Leftrightarrow y^2-9y+18=0\)
\(\Leftrightarrow\left(y-3\right)\left(y-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=3\\y=6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+3x+1=3\\2x^2+3x+1=6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)\left(x+2\right)=0\\\left(2x+5\right)\left(x-1\right)=0\end{cases}}\)
Vậy PT có 4 nghiệm là:\(\frac{1}{2}\)\(,\)\(-2,-\frac{5}{2},1\)
Giải pT
1) x^3-5x^2+3x+1=0
2) x^4-3x^3+4x^2-3x+1=0
3) 3x^3+2x^2-4x-1=0
4) x^4+x^3-13x^2-x+10=0
5) x^4-2x^3-13x^2+14x+24=0
6) 3x^3+x^2-5x-3=0
cái bài này tìm nghiệm là ra mà bạn
câu trả lời của thu hương rất hay!
Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không
hiihhi
d) (3x – 5)(7 – 5x) – (5x + 2)(2 – 3x) = 4 g) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) =0 j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3 k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8 m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0