Cho x,y > 0 và thỏa mãn x 2 - x y + 3 = 0 2 x + 2 y - 14 ≤ 0 .Tính tổng giá trị lớn nhất và nhỏ nhất của biểu thức P = 3 x 2 y - x y 2 - 2 x 3 + 2 x
A. 4.
B. 8.
C. 12.
D. 0.
Ta co: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Cho hai số x và y thỏa mãn: x2- y + 1/4 =0 và y2- x + 1/4 =0. Tìm x và y
cho các số x,y thỏa mãn x>0;y>0 và x+y=1. tìm max và min của phương trình A=x^2+y^2
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2
Min A = 1/2 tại x = y = 1/2
GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)
Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\), \(0\le y\le1\)
\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0
Vậy ....
cho các số x,y thỏa mãn x>0;y>0 và x+y=1. tìm max và min của phương trình A=x^2+y^2
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2
Min A = 1/2 tại x = y = 1/2
GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)
Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\), \(0\le y\le1\)
\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0
Vậy ....
Cho x,y thỏa mãn 0 < x < 1; 0<y<1 và \(\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\). Tìm giá trị của P = \(x+y+\sqrt{x^2-xy+y^2}\)
Có thể tìm được min của P chứ không thể tính ra được giá trị cụ thể của P (biểu thức P vẫn phụ thuộc x;y, cụ thể sau khi rút gọn \(P=2\left(x+y\right)-1\))
\(\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\Leftrightarrow1+\dfrac{x}{1-x}+1+\dfrac{y}{1-y}=3\)
\(\Leftrightarrow3=\dfrac{1}{1-x}+\dfrac{1}{1-y}\ge\dfrac{4}{2-\left(x+y\right)}\)
\(\Leftrightarrow2-\left(x+y\right)\ge\dfrac{4}{3}\Rightarrow x+y\le\dfrac{2}{3}< 1\)
Cũng từ giả thiết:
\(\dfrac{x\left(1-y\right)+y\left(1-x\right)}{\left(1-x\right)\left(1-y\right)}=1\Leftrightarrow x+y-2xy=1-x-y+xy\)
\(\Leftrightarrow3xy=2\left(x+y\right)-1\)
Do đó:
\(P=x+y+\sqrt{\left(x+y\right)^2-3xy}=x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\)
\(P=x+y+\sqrt{\left(1-x-y\right)^2}=x+y+1-x-y=1\)
À tính được P, nãy xác định ngược dấu.
cho x,y thỏa mãn x^3-6x^2+14x+2021=0 và y^3-6y^2+14y-2045=0. tính x+y
CHo hai số x;y<0 thỏa mãn 2/x=5/y và x*y=1000. Khi đó x=?
\(\left(\frac{2}{x}\right)^2=\frac{2.5}{xy}=\frac{10}{1000}=\left(\frac{1}{10}\right)^2\Rightarrow\frac{2}{x}=-\frac{1}{10}\Rightarrow x=-20\)
Dat : 2/x=5/y=x/2=y/5=k
x.y=2k.5k
1000=10k^2
100=k^2
k=+10
Mà :x;y<0
=>k=10
Neu : k=10=>x=2.10=20 và y=5=>y=5.10=50
Vay x=20 và y=50
****
1. Cho x >= 0;y >= 0 và x+y=1. Tìm Min, Max của A=x^2+y^2
2. Cho 2 số thực x,y thỏa mãn x^2+y^2 <= x+y. CMR x+y <= 2
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
cho 2 số x, y thỏa mãn 3x=2y và x≠0, y≠0 rút gọn biểu thức P =\(\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\)
giúp e với ạ
3x=2y
nên x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
\(P=\dfrac{\left(2k\right)^2-2k\cdot3k+\left(3k\right)^2}{\left(2k\right)^2+2k\cdot3k+\left(3k\right)^2}\)
\(=\dfrac{4k^2-6k^2+9k^2}{4k^2+6k^2+9k^2}=\dfrac{4-6+9}{4+6+9}=\dfrac{7}{19}\)
cho `x,y,z` khác `0` thỏa mãn `x + y/2 + z/3 = 1` và `1/x + 2/y + 3/z =0`. Chứng tỏ `A= x^2 + (y^2)/4 + (z^2)/9 =1`
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)
=>yz+2xz+3xy=0
=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)
\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)
=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)
=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)
=>A+xy+2/3xz+1/3yz=1
=>A=1