Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Tố Uyên
Xem chi tiết
nguyen cuc
Xem chi tiết
Ngô minh ánh
Xem chi tiết
baiop
Xem chi tiết
An Thy
13 tháng 7 2021 lúc 9:37

a) Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+12^2}=20\left(cm\right)\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=\dfrac{48}{5}\left(cm\right)\)

Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16^2}{20}=\dfrac{64}{5}\left(cm\right)\)

Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\Rightarrow\angle B\approx37\)

b) tam giác AHE vuông tại H có HN là đường cao \(\Rightarrow AN.AE=AH^2\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH^2=HB.HC\)

\(\Rightarrow AN.AE=HB.HC\)

c) tam giác AHB vuông tại H có HM là đường cao \(\Rightarrow AH^2=AM.AB\)

\(\Rightarrow AN.AE=AM.AB\Rightarrow\dfrac{AM}{AE}=\dfrac{AN}{AB}\)

Xét \(\Delta AMN\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle EABchung\\\dfrac{AM}{AE}=\dfrac{AN}{AB}\end{matrix}\right.\)

\(\Rightarrow\Delta AMN\sim\Delta AEB\left(c-g-c\right)\Rightarrow\dfrac{AE}{AM}=\dfrac{BE}{MN}\)

mà \(BE=3MN\Rightarrow\dfrac{BE}{MN}=3\Rightarrow\dfrac{AE}{AM}=3\Rightarrow AE=3AM\)

undefined

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 13:35

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot20=16\cdot12=192\)

hay AH=9,6(cm)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=16^2-9.6^2=163.84\)

hay HB=12,8(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)

hay \(\widehat{B}\simeq37^0\)

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 13:37

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHE vuông tại H có HN là đường cao ứng với cạnh huyền AE, ta được:

\(AN\cdot AE=AH^2\)(2)

Từ (1) và (2) suy ra \(HB\cdot HC=AN\cdot AE\)

//////
Xem chi tiết
Nguyễn Ngọc Huy Toàn
2 tháng 3 2022 lúc 10:15

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

Vy Phạm Nguyễn Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 19:17

a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔABI có 
AH là đường cao

AH là đường trung tuyến

Do đó: ΔABI cân tại A

Nguyễn Quốc Huy
Xem chi tiết
Kaito Kid
Xem chi tiết
Trương Nhật Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2022 lúc 13:37

a: Ta co: ΔAHM vuông tại H

mà HB là đường trung tuyến

nên HB=BA

=>ΔBAH cân tại B

b: Đề sai rồi bạn

HM làm sao bằng HB được