Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 8 2018 lúc 15:30

Đáp án là B

Phương trình tương đương với

Xét hàm  Ta có  đồng biến

Mà  suy ra

Đặt u = cosx, 

Khi đó phương trình trở thành 

Xét 

Bảng biến thiên

Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 4 2019 lúc 9:55

nguyen hong thai
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 11 2021 lúc 21:44

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)

Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Jack Viet
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 2:23

ĐKXĐ: ...

\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)

\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)

Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm

Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb

\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)

\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)

nguyen hong thai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 5 2018 lúc 5:02

Chọn đáp án A

Vậy số giá trị nguyên của m để phương trình có nghiệm là 10.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2019 lúc 12:47

Đáp án D

Ngô Thành Chung
Xem chi tiết
Hồng Phúc
20 tháng 12 2020 lúc 22:41

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 12 2017 lúc 16:14

Chọn D

Bảng biến thiên 

Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi