Có bao nhiêu số nguyên m thuộc khoảng - 10 ; 10 để hàm số y = x 3 - m x + 2 đồng biến trên 2 ; + ∞ ?
A. 17
B. 15
C. 18
D. 21
Có bao nhiêu giá trị nguyên của m thuộc khoảng (−8;8) để hàm số y = 2 9 - x 2 9 - x 2 - m đồng biến trên khoảng 0 ; 5 ?
A. 9
B. 7
C. 8
D. 6
Ta có yêu cầu bài toán tương đương với:
Vậy có tất cả 7 số nguyên thoả mãn.
Chọn đáp án B.
Có bao nhiêu giá trị nguyên của m thuộc khoảng (−8;8) để hàm số y = 2 9 - x 2 9 - x 2 - m đồng biến trên khoảng 0 ; 5 ?
A. 9
B. 7
C. 8
D. 6
Chọn đáp án B.
Ta có yêu cầu bài toán tương đương với
y ' = m x 9 - x 2 ( 9 - x 2 - m ) 2 > 0 , ∀ x ∈ 0 ; 5
Vậy có tất cả 7 số nguyên thoả mãn.
Có bao nhiêu số nguyên m để phương trình 4x - m.2x+1 + 9 = 0 có đúng một nghiệm thuộc khoảng (0;2)
\(2^x=t\Rightarrow t\in\left(1;4\right)\)
\(t^2-2m.t+9=0\)
\(\Leftrightarrow m=\dfrac{t^2+9}{2t}\)
Xét \(f\left(t\right)=\dfrac{t^2+9}{2t}\) trên (1;4),
\(f\left(1\right)=5\) ; \(f\left(4\right)=\dfrac{25}{8}\) ; \(f\left(t\right)=\dfrac{t^2+9}{2t}\ge\dfrac{6t}{2t}=3\)
\(\Rightarrow f\left(t\right)\) có 2 nghiệm khi \(3< m< \dfrac{25}{8}\) và có 1 nghiệm khi \(\dfrac{25}{8}\le m< 5\)
Có 1 giá trị m
Chà câu kia mỏi cổ quá:
Nhân 2 vế với \(3^{6\sqrt{x}-1}\) và rút gọn:
\(3^{\dfrac{3}{x}+6\sqrt{x}}-3.3^{\dfrac{2}{x}+2\sqrt{x}}+\left(m+2\right)3^{\dfrac{1}{x}+2\sqrt{x}}-m=0\)
\(\Leftrightarrow\left(3^{\dfrac{1}{x}+2\sqrt{x}}\right)^3-3.\left(3^{\dfrac{1}{x}+2\sqrt{x}}\right)^2+\left(m+2\right).3^{\dfrac{1}{x}+2\sqrt{x}}-m=0\)
\(\dfrac{1}{x}+2\sqrt{x}=\dfrac{1}{x}+\sqrt{x}+\sqrt{x}\ge3\sqrt[3]{\dfrac{x}{x}}=3\)
Do đó đặt \(3^{\dfrac{1}{x}+2\sqrt{x}}=t\Rightarrow t\ge3^3=27\)
\(\Rightarrow t^3-3t^2+\left(m+2\right)t-m=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^2-2t+m\right)=0\)
\(\Leftrightarrow t^2-2t+m=0\)
\(\Leftrightarrow m=-t^2+2t\)
Xét hàm \(f\left(t\right)=-t^2+2t\) với \(t\ge27\), từ BBT dễ dàng suy ra \(m\le f\left(27\right)=-675\)
Có bao nhiêu số nguyên m để hàm số y = x 3 - 3 x 2 - m x + 4 có hai điểm cực trị thuộc khoảng (-3;3)?
A. 12
B. 11
C. 13
D. 10
Có bao nhiêu số nguyên m thuộc khoảng - 10 ; 10 để hàm số y = x 3 - m x + 2 đồng biến trên 2 ; + ∞ ?
A. 17
B. 15
C. 18
D. 21
Có nhiều nhất bao nhiêu số nguyên m thuộc nửa khoảng − 2017 ; 2017 để phương trình 2 x 2 − x − 2 m = x − 2 có nghiệm:
A. 2014
B. 2021
C. 2013
D. 2020
Phương trình đã cho tương đương với: x ≥ 2 2 x 2 − x − 2 m = x 2 − 4 x + 4 ⇔ x ≥ 2 x 2 + 3 x − 4 = 2 m
Xét hàm y = x 2 + 3 x − 4 trên 2 ; + ∞ ta có
BBT:
Để phương trình đã cho có nghiệm điều kiện là 2 m ≥ 6 ⇔ m ≥ 3
Mà m ∈ [ - 2017 ; 2017 ) suy ra 3 ≤ m < 2017
Vậy có nhiều nhất 2014 số nguyên thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: A
Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng - 1000 ; 1000 để hàm số y = 2 x 3 - 3 2 m + 1 x 2 + 6 m m + 1 x + 1 đồng biến trên khoảng 2 ; + ∞ ?
A. 999
B. 1001
C. 1998
D. 998
Ta có:
⇒ * luôn có hai nghiệm phân biệt x 1 ; x 2 x 1 < x 2 với mọi m.
Áp dụng hệ thức Vi-ét ta có:
Vậy có tất cả 1001 giá trị m thỏa mãn bài toán.
Chọn B.
Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng (-10000;10000) để hàm số y = 2 x 3 - 3 ( 2 m + 1 ) x 2 + 6 m ( m + 1 ) x + 1 đồng biến trên khoảng ( 2 ; + ∞ ) ?
A. 999.
B. 1001.
C. 1998.
D. 1000.
Chọn B
Phương pháp:
Tính y'.
Tìm m để
Cách giải:
Ta có
Xét phương trình y' = 0 có
Suy ra phương trình y' = 0 luôn có hai nghiệm
Dễ thấy trong khoảng thì hàm số đồng biến.
Bài toán thỏa
Do
Vậy có giá trị của m thỏa mãn bài toán.
Chú ý:
Cách khác: Tìm m để
Theo định lí Viet, ta có
Hàm số đồng biến trên ( 2 ; + ∞ ) ⇔ phương trình y' = 0 có hai nghiệm
Vậy có 1001 số nguyên m thuộc khoảng (-10000;10000)
Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng (-1000;1000) để hàm số y = 2 x 3 - 3 ( 2 m + 1 ) x 2 + 6 m ( m + 1 ) x + 1 đồng biến trên khoảng ( 2 ; + ∞ ) ?
A. 999.
B. 1001.
C. 1998
D. 1000.