Cho khai triển x - 2 18 = a 0 + a 1 x + a 2 x 2 + . . . + a 80 x 80 . Tính tổng S = 1 . a 1 + 2 . a 2 + 3 . a 3 + . . . + 80 . a 80
A. -70
B. 70
C. -80
D. 80
15. Số hạng chính giữa trong khai triển (3x + 2y)^4 là?
18. Tìm hệ số của x^7 trong khai triển : h(x)= x(2 + 3x)^9 là?
19. Tìm hệ số của x^7 trong khai triển g(x)= (1+x)^7 + (1-x)^8 + (2+x)^9 là?
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
Cho n là số nguyên dương thỏa mãn A n + 3 3 - 6 C n + 1 3 = 294
Tìm số hạng mà tích số mũ của x và y bằng 18 trong khai triển nhị thức Newton: 6 n . x 4 3 y + y 2 x 2 n (với x ≠ 0 ; y ≠ 0 ).
A. 160 x 9 y 2
B. 160 x 2 y 9
C. 160 x 3 y 6
D. 160 x 6 y 3
Điều kiện: 2 ≤ n ∈ N
Ta có
A n + 3 3 - 6 C n + 1 3 = 294 ⇔ n + 3 ! n ! - 6 n + 1 ! 3 ! n - 2 ! = 294 ⇔ n + 3 n + 2 n + 1 - n + 1 n n - 1 = 294 ⇔ n 2 + 2 n - 48 = 0 ⇔ n = 6 n = - 8
So với điều kiện chọn n = 6
Với n = 6 ta có 2 x 4 y + y 2 x 2 6 = ∑ k = 0 6 C 0 k 2 x 4 y 6 - k y 2 x 2 k = ∑ k = 0 6 C 0 k 2 6 - k x 24 - 6 k y - 6 + 3 k
Giả thiết bài toán cho ta 24 - 6 k - 6 + 3 k = 18 ⇔ k - 3 2 = 0 ⇔ k = 3
Khi k = 3 ta thu được số hạng thỏa mãn yêu cầu bài toán là: C 6 3 2 2 x 6 y 3 = 160 x 6 y 3
Đáp án D
Tìm hệ số của số hạng không chứa x trong khai triển (\(\frac{x}{2}+\frac{4}{x}\))18 với x≠0
\(\left(\frac{x}{2}+4.x^{-1}\right)^{18}\)
Số hạng tông quát trong khai triển:
\(C_{18}^k.\left(\frac{x}{2}\right)^k.\left(4x^{-1}\right)^{18-k}=C_{18}^k.\left(\frac{1}{2}\right)^k.4^{18-k}.x^{2k-18}\)
Số hạng ko chứa \(x\Rightarrow2k-18=0\Rightarrow k=9\)
Hệ số: \(C_{18}^9.\left(\frac{1}{2}\right)^9.4^9=2^9.C_{18}^9\)
Cho khai triển x + 2 x 6 với x > 0 . Tìm hệ số của số hạng chứa x 3 trong khai triển trên.
A. 80
B. 160
C. 240
D. 60
Đáp án là B
Ta có: x + 2 x 6 = ∑ k = 0 6 C 6 k 2 k x 6 − 3 2 k
Do đó số hạng chứa x 3 trong khai triển ứng với k thỏa mãn: 6 − 3 2 k = 3 ⇔ k = 2
Hệ số của x 3 trong khai triển là: C 6 2 2 2 = 60
Cho khai triển x + 2 x 6 với x>0. Tìm hệ số của số hạng chứa x 3 trong khai triển trên.
A. 80
B. 160
C. 240
D. 60
Cho khai triển nhị thức Niuton x 2 + 2 n x n với n n ∈ ℕ , x > 0. Biết rằng số
hạng thứ 2 của khai triển bằng 98 và n thỏa mãn A n 2 + 6 C n 3 = 36 n Trong các giá trị x sau, giá trị nào thỏa mãn?
A. 3
B. 4
C. 1
D. 2
Cho khai triển nhị thức Niuton x 2 + 2 n x n với n Î ℕ , x > 0. Biết rằng số hạng thứ 2 của khai triển bằng 98 và n thỏa mãn A n 2 + 6 C n 3 = 36 n
Trong các giá trị x sau, giá trị nào thỏa mãn?
A. x = 3.
B. x = 4 .
C. x =1.
D. x = 2 .
Cho nhị thức x + 1 x n , x ≠ 0 trong tổng số các hệ số của khai triển nhị thức đó là 1024. Khi đó số hạng không chứa x trong khai triển nhị thức đã cho bằng
A. 252
B. 125
C. -252
D. 525
Cho khai triển: (4x+7)6 = a0+a1x+...+a6x6
a) Tìm a5
b) Tính tổng các hệ số trong khai triển đó
a5 là số hạng thứ 6 trg khai triển
-số hạng t6 trg khai triển <=> Tk+1=6 <=>k+1=6 => k=5
vậy a5= C564x6
a)Tìm số hạng không chứa x trong khai triển (x+2/x)10
b)Tìm số hạng không chứa x trong khai triển (x+2/x2)6
c)Tìm hệ số của số hạng chứa x10 trong khai triển (3x3-2/x2)5
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810